Synthesis of aluminosilicate mesoporous material MSU-S from natural resources: Investigating the effects on the structure formation
DOI:
https://doi.org/10.62239/jca.2024.062Keywords:
Rice husk, kaolin, mesoporous materialsAbstract
Zeolite seed-based mesoporous aluminosilicate material MSU-S is normally synthesized from pure chemicals. In the study, MSU-S material was synthesized using natural resources such as rice husk, and kaolin in Vietnam. Here, a systematic investigation is conducted to find the relationship between the synthesis conditions (aging time, hydrothermal time, hydrothermal temperature, pH environment) and the formation of mesoporous structure, as well as the material properties. The sample was characterized by XRD, TEM, N2 adsorption-desorption isotherms, and TGA-DSC. The MSU-S material has been synthesized successfully from rice husk and kaolin. The best conditions are aging time of 24 hours, and hydrothermal conditions at 95 oC during 96 hours with pH=9. The MSU-S has an ordered hexagonal mesoporous structure containing zeolite BEA seed. The pore diameter is concentrated at 2.9 nm. The BET surface area is calculated to be 770 m²/g. Thermal stability is determined to be up to 900 oC.
Downloads
References
Imam, H.T., Marr, P.C., Marr, A.C., 2021. Green Chem. 23, 4980–5005. https://doi.org/10.1039/D1GC01852C
Mohidem, N.A., Mohamad, M., Rashid, M.U., Norizan, M.N., Hamzah, F., Mat, H. bin, 2023. Journal of Composites Science 7, 488.
https://doi.org/10.3390/jcs7120488
Sun, G., Huang, Q., Huang, S., Wang, Q., Li, H., Liu, H., Wan, S., Zhang, X., Wang, J., 2016. Catalysts 6, 41. https://doi.org/10.3390/catal6030041
Hu, H., Zhao, Y., Zhang, Y., Xi, J., Xiao, J., Cao, S., 2023. Top Curr Chem (Z) 381, 24.
https://doi.org/10.1007/s41061-023-00434-9
Cecilia, J.A., Moreno Tost, R., Retuerto Millán, M., 2019. International Journal of Molecular Sciences 20, 3213. https://doi.org/10.3390/ijms20133213
Rajendran, A., Fan, H.-X., Li, W.-Y., 2022. Springer International Publishing, Cham, pp. 113–173. https://doi.org/10.1007/978-3-030-85397-6_5
Shi, K., Santiso, E.E., Gubbins, K.E., 2021. Springer International Publishing, Cham, pp. 315–340. https://doi.org/10.1007/978-3-030-65991-2_12
Chen, X., Cao, H., He, Yue, Zhou, Q., Li, Z., Wang, W., He, Yu, Tao, G., Hou, C., 2022. Front. Optoelectron. 15, 50. https://doi.org/10.1007/s12200-022-00051-2
Gupta, D., Varghese, B.S., Suresh, M., Panwar, C., Gupta, T.K., 2022. J Nanopart Res 24, 196.
https://doi.org/10.1007/s11051-022-05577-2
Alam, N., Mokaya, R., 2015. J. Mater. Chem. A 3, 7799–7809. https://doi.org/10.1039/C5TA00548E
Muflikhah, Suparno, N., Lbs, W.Z., Prihatiningsih, M.C., Soontaranoon, S., Mulyawan, A., Patriati, A., 2024. J Porous Mater 31, 969–977.
https://doi.org/10.1007/s10934-024-01574-z
Jangi, I., Vaezi, M.J., 2024. J Aust Ceram Soc 60, 47–54. https://doi.org/10.1007/s41779-023-00949-w
Baltakys, K., Eisinas, A., Dizhbite, T., Jasina, L., Siauciunas, R., Kitrys, S., 2011. Mater Struct 44, 1687–1701. https://doi.org/10.1617/s11527-011-9727-8
Shi, F., Qiao, H., 2020. J Mater Sci: Mater Electron 31, 20223–20231. https://doi.org/10.1007/s10854-020-04542-w
Zhang, J., Wang, K., Duan, X., Zhang, Y., Cai, H., Wang, Z., 2020. J. of Materi Eng and Perform 29, 4032–4039. https://doi.org/10.1007/s11665-020-04906-7
Agliullin, M.R., Talzi, V.P., Filippova, N.A., Bikbaeva, V.R., Bubennov, S.V., Prosochkina, T.R., Grigorieva, N.G., Narender, N., Kutepov, B.I., 2018. Appl Petrochem Res 8, 141–151. https://doi.org/10.1007/s13203-018-0202-0
Knyazeva, E.E., Medved’ko, A.V., Fionov, A.V., Ponomareva, O.A., Dobryakova, I.V., Ivanova, I.I., 2015. Pet. Chem. 55, 462–469. https://doi.org/10.1134/S0965544115060080
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Vietnam Journal of Catalysis and Adsorption
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.