Synthesis of aluminosilicate mesoporous material MSU-S from natural resources: Investigating the effects on the structure formation

Authors

  • Thi Linh Nguyen Hanoi University of Mining and Geology Author
  • Ngo Ha Son Hanoi University of Mining and Geology, 18 Vien street, Duc Thang ward, Bac Tu Liem district, Hanoi, Vietnam | AMCA Research Group, Hanoi University of Mining and Geology, 18 Vien street, Duc Thang ward, Bac Tu Liem district, Hanoi, Vietnam Author
  • Le Van Duong AMCA Research Group, Hanoi University of Mining and Geology, 18 Vien street, Duc Thang ward, Bac Tu Liem district, Hanoi, Vietnam | School of Chemistry and Life Sciences, Hanoi University of Science and Technology, 1 Dai Co Viet, Hanoi, Vietnam Author
  • Ta Ngoc Don School of Chemistry and Life Sciences, Hanoi University of Science and Technology Author
  • Nguyen Van Khang Long Son Petrochemical Co., Ltd, Hamlet 2, Long Son Commune, Vung Tau City, Ba Ria – Vung Tau Province, Vietnam Author

DOI:

https://doi.org/10.62239/jca.2024.062

Keywords:

Rice husk, kaolin, mesoporous materials

Abstract

Zeolite seed-based mesoporous aluminosilicate material MSU-S is normally synthesized from pure chemicals. In the study, MSU-S material was synthesized using natural resources such as rice husk, and kaolin in Vietnam. Here, a systematic investigation is conducted to find the relationship between the synthesis conditions (aging time, hydrothermal time, hydrothermal temperature, pH environment) and the formation of mesoporous structure, as well as the material properties. The sample was characterized by XRD, TEM, N2 adsorption-desorption isotherms, and TGA-DSC. The MSU-S material has been synthesized successfully from rice husk and kaolin. The best conditions are aging time of 24 hours, and hydrothermal conditions at 95 oC during 96 hours with pH=9. The MSU-S has an ordered hexagonal mesoporous structure containing zeolite BEA seed. The pore diameter is concentrated at 2.9 nm. The BET surface area is calculated to be 770 m²/g. Thermal stability is determined to be up to 900 oC.

Downloads

Download data is not yet available.

References

Imam, H.T., Marr, P.C., Marr, A.C., 2021. Green Chem. 23, 4980–5005. https://doi.org/10.1039/D1GC01852C

Mohidem, N.A., Mohamad, M., Rashid, M.U., Norizan, M.N., Hamzah, F., Mat, H. bin, 2023. Journal of Composites Science 7, 488.

https://doi.org/10.3390/jcs7120488

Sun, G., Huang, Q., Huang, S., Wang, Q., Li, H., Liu, H., Wan, S., Zhang, X., Wang, J., 2016. Catalysts 6, 41. https://doi.org/10.3390/catal6030041

Hu, H., Zhao, Y., Zhang, Y., Xi, J., Xiao, J., Cao, S., 2023. Top Curr Chem (Z) 381, 24.

https://doi.org/10.1007/s41061-023-00434-9

Cecilia, J.A., Moreno Tost, R., Retuerto Millán, M., 2019. International Journal of Molecular Sciences 20, 3213. https://doi.org/10.3390/ijms20133213

Rajendran, A., Fan, H.-X., Li, W.-Y., 2022. Springer International Publishing, Cham, pp. 113–173. https://doi.org/10.1007/978-3-030-85397-6_5

Shi, K., Santiso, E.E., Gubbins, K.E., 2021. Springer International Publishing, Cham, pp. 315–340. https://doi.org/10.1007/978-3-030-65991-2_12

Chen, X., Cao, H., He, Yue, Zhou, Q., Li, Z., Wang, W., He, Yu, Tao, G., Hou, C., 2022. Front. Optoelectron. 15, 50. https://doi.org/10.1007/s12200-022-00051-2

Gupta, D., Varghese, B.S., Suresh, M., Panwar, C., Gupta, T.K., 2022. J Nanopart Res 24, 196.

https://doi.org/10.1007/s11051-022-05577-2

Alam, N., Mokaya, R., 2015. J. Mater. Chem. A 3, 7799–7809. https://doi.org/10.1039/C5TA00548E

Muflikhah, Suparno, N., Lbs, W.Z., Prihatiningsih, M.C., Soontaranoon, S., Mulyawan, A., Patriati, A., 2024. J Porous Mater 31, 969–977.

https://doi.org/10.1007/s10934-024-01574-z

Jangi, I., Vaezi, M.J., 2024. J Aust Ceram Soc 60, 47–54. https://doi.org/10.1007/s41779-023-00949-w

Baltakys, K., Eisinas, A., Dizhbite, T., Jasina, L., Siauciunas, R., Kitrys, S., 2011. Mater Struct 44, 1687–1701. https://doi.org/10.1617/s11527-011-9727-8

Shi, F., Qiao, H., 2020. J Mater Sci: Mater Electron 31, 20223–20231. https://doi.org/10.1007/s10854-020-04542-w

Zhang, J., Wang, K., Duan, X., Zhang, Y., Cai, H., Wang, Z., 2020. J. of Materi Eng and Perform 29, 4032–4039. https://doi.org/10.1007/s11665-020-04906-7

Agliullin, M.R., Talzi, V.P., Filippova, N.A., Bikbaeva, V.R., Bubennov, S.V., Prosochkina, T.R., Grigorieva, N.G., Narender, N., Kutepov, B.I., 2018. Appl Petrochem Res 8, 141–151. https://doi.org/10.1007/s13203-018-0202-0

Knyazeva, E.E., Medved’ko, A.V., Fionov, A.V., Ponomareva, O.A., Dobryakova, I.V., Ivanova, I.I., 2015. Pet. Chem. 55, 462–469. https://doi.org/10.1134/S0965544115060080

Published

30-09-2024

Issue

Section

GSCE2024

How to Cite

Synthesis of aluminosilicate mesoporous material MSU-S from natural resources: Investigating the effects on the structure formation. (2024). Vietnam Journal of Catalysis and Adsorption, 13(3), 79-84. https://doi.org/10.62239/jca.2024.062

Share

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

1-10 of 206

You may also start an advanced similarity search for this article.