Pyrolysis method of gel SiO2/chitosan for the preparation amorphous silica nanoparticles from waste rice husk ash

Authors

  • Le Nghiem Anh Tuan Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City, VIETNAM | Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, VIETNAM Author
  • Lai Thi Kim Dung Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City, VIETNAM Author
  • Nguyen Hong Nhung PetroVietNam Fertilizer and Chemicals Corporation, Ho Chi Minh City, VIETNAM Author
  • Bui Duy Du Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City, VIETNAM | Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, VIETNAM Author

DOI:

https://doi.org/10.51316/jca.2021.097

Keywords:

Rice husk ash, silica nanoparticles, amorphous

Abstract

Rice husk ash (RHA) is obtained from industrial waste from drying manufacture and easily available in Vietnam. However, for commercial viability, and for many applications, the pyrolysis method of SiO2/chitosan gel to prepare silica nanoparticles with small particle size (< 10 nm) should not only be as efficient as possible but also adjustable particle size. This study characterized the elemental composition, crystallinity, size and morphology of silica nanoparticles obtained from industrial waste RHA was surveyed by Energy-dispersive X-ray, X-ray diffractograms and Transmission electron microscope. Silica nanoparticles have average diameter of about 9.0 ± 1.9 nm, narrow particle size distribution, high silica content of 99.56% and almost amorphous structure which has one peak at 2θ ~22.1°. Silica nanoparticles separated which may be due to the presence of hydrogen bonding between silanol groups of silica and –OH groups on the surface of chitosan. Fourier Transform Infra-Red spectra confirmed the presence of –OH groups and O-Si-O bonds of silica nanoparticles.

Downloads

Download data is not yet available.

References

R. Pode, Renew. Sust., Energ. Rev. 53 (2016) 1468–1485. https://doi.org/10.1016/j.rser.2015.09.051

A. I. Hafez, Wat. Ener. Food. Env. J. 1(2) (2020) 37- 45. http://dx.doi.org/10.18576/wefej/010204

S. Sankar, S. K. Sharma, N. Kaur, B. Lee, D. Y. Kim, S. Lee, H. Jung, Ceram. Int. 42 (2016) 4875-4885. https://doi.org/10.1016/j.ceramint.2015.11.172

J. Chun and J. H. Lee, Sustainability 12(24) (2020) 10683. https://doi.org/10.3390/su122410683

K. M. Jonathan, K. P. Kuria, G. J. Mwangi and N. F. Gichuki, J. Chem. Eng. Mater. Sci. 11(2) (2020) 24-30. https://doi.org/10.5897/JCEMS2020.0348

A. Agi, R. Junin, M. Z. Jaafar, R. Mohsin, A. Arsad, A. Gbadamos, C. K. Fung, J. Gbonhinbor, J. Mater. Res. Technol. 9(6) (2020) 13054–13066. https://doi.org/10.1016/j.jmrt.2020.08.112

K. Askaruly, S. Azat, Z. Sartova, M.r Yeleuov, A. Kerimkulova, K. Bekseitova, J. Chem. Technol. Metall. 55(1) (2020) 88-97. https://dl.uctm.edu/journal/node/j2020-1/12_19-76_p_88-97.pdf

P. Nayak, A. Datta, Silicon 13 (2021) 1209–1214. https://doi.org/10.1007/s12633-020-00509-y

D. Dhaneswara, J. F. Fatriansyah, F. W. Situmorang, A. N. Haqoh, Int. J. Tech. 11(1) (2020) 200-208. https://doi.org/10.14716/ijtech.v11i1.3335

R. A. Bakar, R. Yahya, S. N. Gan, Procedia Chem. 19 (2016) 189–195. https://doi.org/10.1016/j.proche.2016.03.092

S. Azat, Z. Sartova, K. Bekseitova, K. Askaruly, Turk. J. Chem. 43 (2019) 1258 – 1269. http://doi.org/10.3906/kim-1903-53

L. N. A. Tuan, L. T. K. Dung, L. D. T. Ha, N. Q. Hien, D. V. Phu, Viet. J. Chem. 55(4) (2017) 455-459. https://doi.org/10.15625/2525-2321.2017-00490

S. K. Sharma, A. R. Sharma, S. D. V. N. Pamidimarri, J. Gaur, B. P. Singh, S. Sekar, D. Y. Kim and S. S. Lee, Nanomaterials 9 (2019) 1440. https://doi.org/10.3390/nano9101440

B. Raut, K. Panthi, J. Nepal Chem. Soc. 40 (2019) 67-72. https://doi.org/10.3126/jncs.v40i0.27285

V. H. Le, C. N. T. Ha, T. H. Ha, Nanoscale Res. Lett. 8(58) (2013) 58–67.

https://doi.org/10.1186/1556-276X-8-58

R. Subitha, G. S. P. L. Malar, J. Chem. 36(2) (2020) 344-347. http://dx.doi.org/10.13005/ojc/360219

G. M F. Gomes, C. Philipssen, E. K Bard, L. D. Zen, G. de Souza, J. Environ. Chem. Eng. 4(2) (2016) 2278–2290. https://doi.org/10.1016/j.jece.2016.03.049

R. Z. Farhan, S. E. Ebrahim, Baghdad Sci. J. 18(3) (2021) 0494. https://doi.org/10.21123/bsj.2021.18.3.0494

Published

30-01-2022

Issue

Section

Full Articles

How to Cite

Pyrolysis method of gel SiO2/chitosan for the preparation amorphous silica nanoparticles from waste rice husk ash . (2022). Vietnam Journal of Catalysis and Adsorption, 10(1S), 87-91. https://doi.org/10.51316/jca.2021.097

Share

Similar Articles

1-10 of 96

You may also start an advanced similarity search for this article.