Dyes adsorption properties of odered mesoporous carbon material using MCF silica as hard template
DOI:
https://doi.org/10.51316/jca.2022.047Keywords:
Ordered mesoporous carbons materials, MCF template, Methylene blue, Red phenol, Direct blue 71, dye adsorptionAbstract
Ordered mesoporous carbon materials using MCF silica as hard template (OMC(MCF)) were synthesized. The synthesized OMC(MCF) materials were characterized by different techniques such as XRD, TEM, BET. The results revealed that the surface area, pore volume and pore size of OMC (MCF) were of 1,073 m2 /g, 1.35 cm3 /g and 5.7 nm, respectively. The dye adsorption experiments were carried out through a batch test to evaluate synthesized OMC(MCF) materials. Methylene blue (MB- cationic dye), phenol red (PR - anionic dye) and direct blue 71 dyes (DB71- anionic dye) were chosen as adsorbates. Negatively charged surfaces OMC(MCF) materials have better adsorption capacity for positively charged methylene blue than that of negatively charged direct blue 71 and phenol red. OMC(MCF) materials could be used as a potential adsorbent for the removal of positive charged organic dyes.
Downloads
References
S. Jun, S.H. Joo, R. Ryoo, M. Kruk, M. Jaroniec, Z. Liu, T. Ohsuna, O. Terasaki, J. Am. Chem. Soc. 122 (2000) 10712-10713. https://doi.org/10.1021/ja002261e
D. Barrera, M. Dávila, V. Cornette, J.C.A de Oliveira, R.H. López, K. Sapag, Micropor. Mesopor. Mater. 180 (2013) 71–78. https://doi.org/10.1016/j.micromeso.2013.06.028
M. Enterria, F. Suárez-García, A. Martínez-Alonso, J.M.D. Tascon, Micropor. Mesopor. Mater. 151 (2012) 390-396. https://doi.org/10.1016/j.micromeso.2011.10.004
N.F Nejad, E. Shams, M.K. Amini, J.C. Bennett, Micropor. Mesopor. Mater. 168 (2013) 239- 246. https://doi.org/10.1016/j.micromeso.2012.10.012
Y. Li, B. Yuan, J. Fu, S. Deng, X. Lu, J. Colloid Interface Sci. 408 (2013) 181–190. https://doi.org/10.1016/j.jcis.2013.07.037
J. Chen, F. Cao, S. Chen, M. Ni, X. Gao, K. Cen, Appl. Surf. Sci. 317 (2014) 26–34. https://doi.org/10.1016/j.apsusc.2014.08.067
Z. Ezzeddine, I. Batonneau-Gener, Y. Pouilloux, H. Hamad, J. Mol. Liq. 223 (2016) 763–770. https://doi.org/10.1016/j.molliq.2016.09.003
W. Libbrecht, A. Verberckmoes, J.W. Thybaut, P. V.D. Voort, J.D. Clercq, Carbon 116 (2017) 528-546. https://doi.org/10.1016/j.carbon.2017.02.016
C.C. Huang, Y.H. Li, Y.W. Wang, C.H. Chen, Int. J. Hydrogen Energy 38 (2013) 3994-4002. https://doi.org/10.1016/j.ijhydene.2013.01.081
C.Y. Ahn, J.Y. Cheon, S.H. Joob, J. Kim, J. Power Sources, 222 (2013) 477 – 482. https://doi.org/10.1016/j.jpowsour.2012.09.012
S. Liu, C. Lai, B. Li, C. Zhang, M. Zhang, D. Huang, L. Qin, H. Yi, X. Liu, F. Huang, X. Zhou, L. Chen, Chem. Eng. J. 384 (2020) 123304. https://doi.org/10.1016/j.cej.2019.123304
R. Fu, Z. Li, Y. Liang, L.I. Feng, X.U Fei, D. Wu, New Carbon Materials, 26 (2011) 171-179. https://doi.org/10.1016/S1872-5805(11)60074-7
R. Ryoo, S. H. Joo, M. Kruk, M. Jaroniec, Adv. Mater, 13 (2001) 677 - 681.
https://doi.org/10.1002/1521-4095(200105)13:9<677::AID-ADMA677>3.0.CO;2-C
M. Hata, Y. Amano, M. Machida, F. Imazeki. Journal of Environmental Chemistry 25 2 (2015) 79 - 86. https://doi.org/10.5985/jec.25.79