Direct synthesis of Cu-TiO2-SBA-16 photocatalysts and its application for the oxidative desulfurization of fuel oil model

Authors

  • Truong Thi Hanh Institute of Environment, Vietnam Maritime University, 484 Lach Tray, Kenh Duong, Le Chan, Hai Phong, Vietnam Author
  • Vu Duc Cuong Viet Tri University of Industry, 9-Tien Son, Tien Cat, Viet Tri, Phu Tho, Vietnam Author
  • Pham Xuan Nui Department of Chemical Engineering, Hanoi University of Mining and Geology, 18 Pho Vien, Duc Thang, Bac Tu Liem, Hanoi, Vietnam. Author

DOI:

https://doi.org/10.62239/jca.2024.055

Keywords:

SBA-16, TiO2, photocatalytic, oxidative desulfurization (ODS), dibenzothiophene (DBT)

Abstract

In this study, the Cu-TiO2-SBA-16 photocatalytic materials were successfully prepared by direct hydrothermal synthesis method. The products were characterized by X-ray diffraction (XRD), Ultraviolet–Visible Diffuse Reflectance Spectroscopy (UV-Vis DRS), energy dispersive X-ray (EDX), transmission electron microscopy (TEM), N2 adsorption–desorption isotherms, X-ray photoelectron spectroscopy (XPS) methods. The analysis illustrated that Cu-TiO2 nanocrystals were successfully incorporated into the SBA-16 mesopores. The photocatalytic activity of these Cu-TiO2-SBA-16 mesoporous materials have been tested by the oxidative desulfurization reaction of dibenzothiophene (DBT) using H2O2 as an oxidant under UV light irradiation. The results showed that the Cu-TiO2-SBA-16 mesoporous materials prepared at the Cu/Ti mole ratios of 0.05 showed higher photocatalytic activity than the rest due to the decrease in band gap energy.

Downloads

Download data is not yet available.

References

X.B. Lim, W.-J. Ong, Nanoscale Horiz.6 (2021) 588–633. https://doi.org/10.1039/D1NH00127B

D. Julião, S. Ribeiro, B. De Castro, L. Cunha-Silva, Balula SS. Hershey, PA, USA: IGI Global; 2016. p. 426–58. https://doi.org/10.4018/978-1-4666-9545-0.ch014

V.C. Srivastava, RSC Adv 2 (2012) 2, 759–83. https://doi.org/10.1039/C1RA00309G

U.S. Environmental Protection Agency, Diesel Fuel Standards and Rulemakings, https://www.epa.gov/diesel-fuelstandards/ diesel-fuel-standards standards-and-rulemakings, 2020.

X. Weng, L. Cao, G. Zhang, F. Chen, L. Zhao, Y. Zhang, J. Gao, C. Xu, Ind. Eng. Chem. Res. 59 (2020) 59, 21261–21274. https://doi.org/10.1021/acs.iecr.0c04049.

M.A. Betiha, A.M. Rabie, H.S. Ahmed, A.A. Abdelrahman, M.F. El-Shahat, Egypt. J. Pet. 27 (2018) 715–730. https://doi.org/10.1016/j.ejpe.2017.10.006.

K.X. Lee, J.A. Valla, React. Chem. Eng. 4 (2019) 1357–1386. https://doi.org/10.1039/C9RE00036D.

P. Sikarwar, V. Gosu, V. Subbaramaiah, Rev. Chem. Eng. 35 (2019) 669–705. https://doi.org/10.1515/revce-2017-0082.

M.H. Ibrahim, M. Hayyan, M.A. Hashim, A. Hayyan, Renew. Sustain. Energy Rev. 76 (2017) 1534–1549.

B.K. Mutuma, G.N. Shao, W.D. Kim, H.T. Kim, J. Colloid Interface Sci. 442 (2015) 1–7. https://doi.org/10.1016/j.jcis.2014.11.060.

D.I. Anwar, D. Mulyadi, Procedia Chem. 17 ( 2015 ) 49–54. https://doi.org/10.1016/j.proche.2015.12.131.

T. Sreethawong, S. Yoshikawa, Catal. Commun. 6 (2005) 661–668. https://doi.org/10.1016/j.catcom.2005.06.004.

U.G. Akpan, B.H. Hameed, Appl. Catal. A: Gen. 375 (2010) 1–11. https://doi.org/10.1016/j.apcata.2009.12.023.

X.N. Pham, T.D. Pham, B.M. Nguyen, H.T. Tran, D.T. Pham, J. Chem. 2018 (2018) ID 8418605. https://doi.org/10.1155/2018/8418605.

X.N. Pham, B.M. Nguyen, H.T. Thi, H.V. Doan, Adv. Powder Technol. 29 (8) 2018, 1827-1837. https://doi.org/10.1016/j.apt.2018.04.019.

X.N. Pham, M.B. Nguyen, H.S. Ngo, H.V. Doan, J. Ind. Eng. Chem. 90 (2020) 358-370. https://doi.org/10.1016/j.jiec.2020.07.037

E.M. Rivera-Muñoz, R. Huirache-Acuña. Int. J. Mol. Sci. 11 (2010) 3069-3086. https://doi.org/10.3390/ijms11093069.

A. Kumar, D. Srinivas, J. Mol. Catal. A: Chem. 368– 369 (2013) 112–118. https://doi.org/10.1016/j.molcata.2012.11.026

X.N. Pham, M.B. Nguyen, H.V. Doan, Adv. Powder Technol. 31(8) (2020) 3351-3360. https://doi.org/10.1016/j.apt.2020.06.028.

A. Adamu, M. Isaacs, K. Boodhoo, F.R. Abegão, J. CO2 Util. 70 (2023) 102428. https://doi.org/10.1016/j.jcou.2023.102428.

Q. Liu, T. Su, H.Zhang, W. Liao, W. Ren, Z. Zhu, K. Yang, C. Len, J. Yu, D. Zhao, H. Lü. Fuel 333 (2023) 126286. https://doi.org/10.1016/j.fuel.2022.126286.

Z. Song, M. Bi, J. Li, Y. Guo, Q. Xu, Y. He, N. Zhao, L. Chen, D. Ren. Silicon 16 (2024) 4159–4172. https://doi.org/10.1007/s12633-024-02982-1

Published

30-09-2024

Issue

Section

GSCE2024

How to Cite

Direct synthesis of Cu-TiO2-SBA-16 photocatalysts and its application for the oxidative desulfurization of fuel oil model. (2024). Vietnam Journal of Catalysis and Adsorption, 13(3), 36-41. https://doi.org/10.62239/jca.2024.055

Share

Funding data

Similar Articles

1-10 of 120

You may also start an advanced similarity search for this article.