Study on granulation of adsorbent-based Fe2O3/TiO2 composite for efficient removal of As(V) in aqueous media
DOI:
https://doi.org/10.62239/jca.2024.040Keywords:
Granulation, adsorption, Heavy metals, fixed-bed adsorption columnAbstract
Granular adsorbent-based Fe2O3/TiO2 was fabricated via the drum granulation method with bentonite as the binder. The granulation process consists of three steps: mixing Fe2O3/TiO2 composite powder; fine coal dust into a homogeneous mixture; granulating by spraying water mist; drying granules and calcining at 500 oC for 1 hour to create pores. The granules used to remove As(V) from aqueous media were investigated using a fixed-bed adsorption column. The effects of inlet As(V) concentration, flow rate, and bed height on the breakthrough characteristics of the adsorption system were determined. The adsorption data were fitted to three well-established fix-bed adsorption models, namely, the Adam-Bohart, Thomas, and Yoon-Nelson models, with a correlation coefficient, R2 > 0.96.
Downloads
References
A. Dabizha, C. Bahr, M. Kersten, Water research X 9 (2020) 100061. https://doi.org/10.1016/j.wroa.2020.100061
C.-L. Su, L. Chen, T.-J. Wang, L.-X. Yu, Y. Jin, Water Science Technology: Water Supply 13 (2013) 1309-1316. https://doi.org/10.3390/w12102720
T. Liang, L. Li, C. Zhu, X. Liu, H. Li, Q. Su, J. Ye, B. Geng, Y. Tian, M.F. Sardar, Water 12 (2020) 2720. https://doi.org/10.1016/j.jcis.2011.08.023
M. D’Arcy, D. Weiss, M. Bluck, R. Vilar, Journal of colloid interface science 364 (2011) 205-212. https://doi.org/10.1016/j.jcis.2011.08.023
C.M. Babu, R. Vinodh, B. Sundaravel, A. Abidov, M.M. Peng, W.S. Cha, H.-T. Jang, Journal of the Taiwan Institute of Chemical Engineers 62 (2016) 199-208. https://doi.org/10.1016/j.jtice.2016.02.005
J.C. Bullen, J.P. Kenney, S. Fearn, A. Kafizas, S. Skinner, D. Weiss, I. Science, Journal of Colloid Interface Science 580 (2020) 834-849. https://doi.org/10.1016/j.jcis.2020.06.119
P.T. Nguyen, D.A. Nguyen, T.T. Nguyen, B.T. Le, P.H.T. Nguyen, D.D. La, Advances in Natural Sciences: Nanoscience Nanotechnology 10 (2019) 015014. https://doi.org/10.1088/2043-6254/ab0d1d
C.V. Tran, P.T.H. Nguyen, D.D. Nguyen, H.T. Pham, D.T. Do, D.D. La, Sustainability 15 (2023) 7253. https://doi.org/10.3390/su15097253
B. Zhao, Y. Zhang, X. Dou, H. Yuan, M. Yang, Water Science Technology 72 (2015) 2179-2186. https://doi.org/10.2166/wst.2015.438
P. Jelínek, S.M. Dobosz, J. Beňo, K. Major-Gabryś, Archives of Metallurgy Materials 59 (2014) 1041-1044. https://doi.org/10.2478/amm-2014-0175
C. Bertagnolli, S.J. Kleinübing, M.G.C. Da Silva, Applied Clay Science 53 (2011) 73-79. https://doi.org/10.1016/j.clay.2011.05.002
J. Du, S. Chadalavada, R. Naidu, Applied Clay Science 148 (2017) 131-137. https://doi.org/10.1016/j.clay.2017.07.033
R. Bergamasco, D. Mantovani, A. Diório, C. de Oliveira Bezerra, H.B. Quesada, G. Wernke, M.R. Fagundes-Klen, L.F. Cusioli, Water 15 (2023) 1260. https://doi.org/10.3390/w15071260
O.B. Omitola, M.N. Abonyi, K.G. Akpomie, F.A. Dawodu, Applied Water Science 12 (2022) 94. https://doi.org/10.1007/s13201-022-01624-4
Y. Jin, C. Teng, S. Yu, T. Song, L. Dong, J. Liang, X. Bai, X. Liu, X. Hu, J. Qu, Chemosphere 191 (2018) 799-808. https://doi.org/10.1016/j.chemosphere.2017.08.154
P.G. Hiremath, T. Theodore, Periodica Polytechnica Chemical Engineering 61 (2017) 188-199. https://doi.org/10.3311/PPch.10085
K. Nithya, A. Sathish, P. Kumar, Water Process 33 (2020) 101069. https://doi.org/10.1016/j.jwpe.2019.101069
B. Hayati, A. Maleki, F. Najafi, F. Gharibi, G. McKay, V.K. Gupta, S.H. Puttaiah, N. Marzban, Chemical Engineering Journal 346 (2018) 258-270. https://doi.org/10.1016/j.cej.2018.03.172