Study on granulation of adsorbent-based Fe2O3/TiO2 composite for efficient removal of As(V) in aqueous media

Authors

  • Tran Van Chinh Institute of Chemistry and Materials, Academy of Military Science and Technology Author
  • Nguyen Duc Thieu Hanoi University of Industry Author
  • Nham Duc Thinh Hanoi University of Industry Author
  • Nguyen Thi Anh Thu Hanoi University of Industry Author
  • Nguyen Manh Ha Hanoi University of Industry Author
  • Nguyen Thi Hoai Phuong Department of Chemistry and Environment, Joint Vietnam-Russia Tropical Science and Technology Research Center, Ha Noi, Vietnam Author
  • La Duc Duong Institute of Chemistry and Materials, Academy of Military Science and Technology Author

DOI:

https://doi.org/10.62239/jca.2024.040

Keywords:

Granulation, adsorption, Heavy metals, fixed-bed adsorption column

Abstract

Granular adsorbent-based Fe2O3/TiO2 was fabricated via the drum granulation method with bentonite as the binder. The granulation process consists of three steps: mixing Fe2O3/TiO2 composite powder; fine coal dust into a homogeneous mixture; granulating by spraying water mist; drying granules and calcining at 500 oC for 1 hour to create pores. The granules used to remove As(V) from aqueous media were investigated using a fixed-bed adsorption column. The effects of inlet As(V) concentration, flow rate, and bed height on the breakthrough characteristics of the adsorption system were determined. The adsorption data were fitted to three well-established fix-bed adsorption models, namely, the Adam-Bohart, Thomas, and Yoon-Nelson models, with a correlation coefficient, R2 > 0.96.

Downloads

Download data is not yet available.

References

A. Dabizha, C. Bahr, M. Kersten, Water research X 9 (2020) 100061. https://doi.org/10.1016/j.wroa.2020.100061

C.-L. Su, L. Chen, T.-J. Wang, L.-X. Yu, Y. Jin, Water Science Technology: Water Supply 13 (2013) 1309-1316. https://doi.org/10.3390/w12102720

T. Liang, L. Li, C. Zhu, X. Liu, H. Li, Q. Su, J. Ye, B. Geng, Y. Tian, M.F. Sardar, Water 12 (2020) 2720. https://doi.org/10.1016/j.jcis.2011.08.023

M. D’Arcy, D. Weiss, M. Bluck, R. Vilar, Journal of colloid interface science 364 (2011) 205-212. https://doi.org/10.1016/j.jcis.2011.08.023

C.M. Babu, R. Vinodh, B. Sundaravel, A. Abidov, M.M. Peng, W.S. Cha, H.-T. Jang, Journal of the Taiwan Institute of Chemical Engineers 62 (2016) 199-208. https://doi.org/10.1016/j.jtice.2016.02.005

J.C. Bullen, J.P. Kenney, S. Fearn, A. Kafizas, S. Skinner, D. Weiss, I. Science, Journal of Colloid Interface Science 580 (2020) 834-849. https://doi.org/10.1016/j.jcis.2020.06.119

P.T. Nguyen, D.A. Nguyen, T.T. Nguyen, B.T. Le, P.H.T. Nguyen, D.D. La, Advances in Natural Sciences: Nanoscience Nanotechnology 10 (2019) 015014. https://doi.org/10.1088/2043-6254/ab0d1d

C.V. Tran, P.T.H. Nguyen, D.D. Nguyen, H.T. Pham, D.T. Do, D.D. La, Sustainability 15 (2023) 7253. https://doi.org/10.3390/su15097253

B. Zhao, Y. Zhang, X. Dou, H. Yuan, M. Yang, Water Science Technology 72 (2015) 2179-2186. https://doi.org/10.2166/wst.2015.438

P. Jelínek, S.M. Dobosz, J. Beňo, K. Major-Gabryś, Archives of Metallurgy Materials 59 (2014) 1041-1044. https://doi.org/10.2478/amm-2014-0175

C. Bertagnolli, S.J. Kleinübing, M.G.C. Da Silva, Applied Clay Science 53 (2011) 73-79. https://doi.org/10.1016/j.clay.2011.05.002

J. Du, S. Chadalavada, R. Naidu, Applied Clay Science 148 (2017) 131-137. https://doi.org/10.1016/j.clay.2017.07.033

R. Bergamasco, D. Mantovani, A. Diório, C. de Oliveira Bezerra, H.B. Quesada, G. Wernke, M.R. Fagundes-Klen, L.F. Cusioli, Water 15 (2023) 1260. https://doi.org/10.3390/w15071260

O.B. Omitola, M.N. Abonyi, K.G. Akpomie, F.A. Dawodu, Applied Water Science 12 (2022) 94. https://doi.org/10.1007/s13201-022-01624-4

Y. Jin, C. Teng, S. Yu, T. Song, L. Dong, J. Liang, X. Bai, X. Liu, X. Hu, J. Qu, Chemosphere 191 (2018) 799-808. https://doi.org/10.1016/j.chemosphere.2017.08.154

P.G. Hiremath, T. Theodore, Periodica Polytechnica Chemical Engineering 61 (2017) 188-199. https://doi.org/10.3311/PPch.10085

K. Nithya, A. Sathish, P. Kumar, Water Process 33 (2020) 101069. https://doi.org/10.1016/j.jwpe.2019.101069

B. Hayati, A. Maleki, F. Najafi, F. Gharibi, G. McKay, V.K. Gupta, S.H. Puttaiah, N. Marzban, Chemical Engineering Journal 346 (2018) 258-270. https://doi.org/10.1016/j.cej.2018.03.172

Published

30-06-2024

Issue

Section

Full Articles

How to Cite

Study on granulation of adsorbent-based Fe2O3/TiO2 composite for efficient removal of As(V) in aqueous media. (2024). Vietnam Journal of Catalysis and Adsorption, 12(2), 105-110. https://doi.org/10.62239/jca.2024.040

Share

Most read articles by the same author(s)

1 2 3 > >> 

Similar Articles

1-10 of 162

You may also start an advanced similarity search for this article.