Synthesis of ZIF-67- Effect of solvent on the structure
DOI:
https://doi.org/10.51316/jca.2021.016Keywords:
ZIF-67, synthesis, solvents, nanomaterialsAbstract
In the present paper, ZIF-67 material was synthesized from cobalt (II) nitrate hexahydrate and 2-methyl imidazole in three different solvents (methanol, ethanol and acetone) at room temperature. The obtained samples were characterized using XRD, SEM, FTIR, TGA and nitrogen adsorption/desorption measurements. The results show that the synthesized ZIF-67 materials had a high purity, nano-size, and uniformity with the sharp dodecahedrons structure of ZIF-67. Solvents had an influence on the size and nature of the ZIF-67 crystal. The average crystalline size of the nanoparticles calculated by Scherrer equation were 64 nm for sample in acetone solvent, 128 nm for sample in ethanol solvent and 132 nm for sample in methanol solvent. The obtained samples had high thermal stability (> 320 °C). The ZIF-67 material with ethanol solvent had a high specific surface area (SBET) of 1506 m2/g. The synthesized samples exhibited better adsorption capacity of methyl oranges than that of rhodamine B.
Downloads
References
B. D. Pimentel, A. Parulkar, E-K. Zhou, N. A. Brunelli, and R. P. Lively, ChemSusChem 7 (2014) 1–40. https:// 10.1002/cssc.201402647
Chi N. V., Tung N. T., Huong N. T. H., Thuy C. T., Nam P. T. S., Vietnam J. Catal. Ads. 9(2020) 1-7.
G. Zhong, D. Liu, and J. Zhang, J. Mater. Chem. A 6 (2018) 1887. https:// 10.1039/c7ta08268a
E. Sohouli, M. S. Karimi, E. M. Khosrowshahi, M. Rahimi-Nasrabadi, F. Ahmadi, Measurement 165 (2020) 108140. doi.org/10.1016/j.measurement.2020.108140
Du P. D., Nghi N. H., Vietnam J. Catal. Ads. 9(2020) 94-99.
X. Guo, T. Xing, Y. Lou, J. Chen, J. Solid State Chem. 235(2016) 107-112.https:// dx.doi.org/10.1016/j.jssc.2015.12.021
Y. Li, K. Zhou, M. He, J. Yao, Micro. Meso. Mater. 234(2016) 287-292. https://dx.doi.org/10.1016/j.micromeso.2016.07.039
H. D. Park., Reddy A., Y. Kim, R. Ma, J. Choi, T. K. Kim, K. S. Lee, Solid State Sci. 62 (2016) 82-89. https://10.1016/j.solidstatesciences.2016.10.018
S. Feng , M. Bu , J. Pang, W. Fan, L. Fan, H. Zhao, G. Yang, H. Guo, G. Kong, H. Sun, Z. Kang, D. Sun,
J. Mem. Sci. 593(2020) 117404. https://doi.org/10.1016/j.memsci.2019.117404
Q. Yang, S. Ren, Q. Zhao, R. Lu, H. Cheng, Z. Chen., H. Zheng, Chem. Eng. J. 333(2018) 49-57. https://dx.doi.org/10.1016/j.cej.2017.09.099
S. Payra, S. Challagulla, C. Chakraborty, S. Roy, J. Electroanal. Chem. 853(2019) 113545. https://doi.org/10.1016/j.jelechem.2019.113545
K.-Y. A. Lin , W. D. Lee, Chem. Eng. J. 284(2016) 1017–1027. ttps://dx.doi.org/10.1016/j.cej.2015.09.075
X. Liu, B. Wang, J. Cheng, Q. Meng, Y. Song, M. Li, Sep. Puri. Technol. 250(2020) 117300. https://doi.org/10.1016/j.seppur.2020.117300
X. D. Du, C.-C. Wang, J.-G. Liu, X-D. Zhao, J. Zhong, Y.-X. Li, J. Li, P. Wang, J Col. Interf. Sci. 506(2017) 437–441 https://dx.doi.org/10.1016/j.jcis.2017.07.073