Electrochemical sensor determines antibiotic residues of Chloramphenicol in fresh milk using modified Glassy carbon electrode based on nZVI/GNPs/TCPP nanocomposite material synthesized by green chemistry method
DOI:
https://doi.org/10.62239/jca.2024.025Abstract
Chloramphenicol (CAP) is a broad-spectrum antibiotic widely used in medicine and agriculture since 1948 [1]. Currently, CAP is banned due to its potential health hazards [2]. Therefore, detecting antibiotic residual levels of CAP in food is necessary. The electrochemical method, characterized by its simplicity, speed, high sensitivity, ease of on-site analysis, and low cost, demonstrates potential in assessing antibiotic residual CAP compared to traditional methods such as liquid chromatography-mass spectrometry (LC-MS), liquid chromatography-electrochemical ionization-mass spectrometry (LC-EIS-MS/MS), gas chromatography-mass spectrometry (GC-MS),...[3]. In this study, a material from zero-valent iron nanoparticles combined with graphene nanoplatelets and porphyrin nanofibers (nZVI/GNPs/TCPP) synthesized through green chemistry methods was used as the electrode material to analyze antibiotic residual CAP in fresh milk samples using cyclic voltammetry (CV) and differential pulse voltammetry (DPV), promising results with a limit of detection (LOD) of 0,1212 μM, limit of quantification (LOQ) of 0,4040 μM, and sensitivity of 0,009998 μA.μM-1.cm-2.
Downloads
References
D. Gottlieb, in: D. Gottlieb, P.D. Shaw (Eds.), Biosynthesis, Springer Berlin Heidelberg, Berlin, Heidelberg, 1967, 32. https://doi.org/10.1007/978-3-662-38441-1
P. Talebizadehsardari, Z. Aramesh-Boroujeni, M.M. Foroughi, A. Eyvazian, S. Jahani, H.R. Faramarzpour, F. Borhani, M. Ghazanfarabadi, M. Shabani, A.H. Nazari, Microchemical Journal 159 (2020) 105535. https://doi.org/10.1016/j.microc.2020.105535
A. Bagheri Hashkavayi, J. Bakhsh Raoof, R. Ojani, E.J.E. Hamidi Asl, Electroanalysis 27(6) (2015) 1449-1456. https://doi.org/10.1002/elan.201400718
J. Mehta, B. Van Dorst, E. Rouah-Martin, W. Herrebout, M.-L. Scippo, R. Blust, J. Robbens, Journal of Biotechnology 155 (2011) 361-369. https://doi.org/10.1016/j.jbiotec.2011.06.043
J. Kagira, P. Achoki, F. Wariara, B. Wanja, J. Kiarie, K. Cheruiyot, M.J.J.o.A.L.S.I. Kung’u, Journal of Applied Life Sciences International 26 (2023) 21-30. https://doi.org/10.9734/jalsi/2023/v26i4611
G. Ziv, E. Bogin, F. Sulman, Zentralblatt für Veterinärmedizin. Reihe A 20 (1973) 801-811. https://doi.org/10.1111/j.1439-0442.1973.tb01057.x
W. Yi, Z. Li, C. Dong, H.-W. Li, J. Li, Microchemical Journal 148 (2019) 774-783. https://doi.org/10.1016/j.microc.2019.05.049
R. Karthik, M. Govindasamy, S.-M. Chen, V. Mani, B.-S. Lou, R. Devasenathipathy, Y.-S. Hou, A. Elangovan, Journal of Colloid and Interface Science 475 (2016) 46-56. https://doi.org/10.1016/j.jcis.2016.04.044
T.N. Pham, N.X. Dinh, V.M. Tien, V.H. Ong, R. Das, T.L. Nguyen, Q.H. Tran, D.T. Tran, D.L. Vu, A.-T. Le, Analytica Chimica Acta 1229 (2022) 340398. https://doi.org/10.1016/j.aca.2022.340398
Y. Sun, G.I.N. Waterhouse, X. Qiao, J. Xiao, Z. Xu, Food Chemistry 410 (2023) 135434. https://doi.org/10.1016/j.foodchem.2023.135434
M. Rengasamy, K. Anbalagan, S. Kodhaiyolii, V. Pugalenthi, RSC Advances 6 (2016) 9261-9269. https://doi.org/10.1039/C5RA15186D
D.D. La, R.V. Hangarge, S. V. Bhosale, H.D. Ninh, L.A. Jones, Applied Sciences 7 (2017) 643. https://doi.org/10.3390/app7060643
N.T. Le, T.-D. Dang, K. Hoang Binh, T.M. Nguyen, T.N. Xuan, D.D. La, A. Kumar Nadda, S.W. Chang, D.D. Nguyen, Sustainable Chemistry and Pharmacy 25 (2022) 100598. https://doi.org/10.1016/j.scp.2022.100598
W. Qin, C. Yang, R. Yi, G.J.J.o.N. Gao, Journal of Nanomaterials 2011 (2011) 159259. http://dx.doi.org/10.1155/2011/159259
C.S. Clemente, V.G.P. Ribeiro, J.E.A. Sousa, F.J.N. Maia, A.C.H. Barreto, N.F. Andrade, J.C. Denardin, G. Mele, L. Carbone, S.E. Mazzetto, P.B.A. Fechine, Journal of Nanoparticle Research 15 (2013) 1739. https://doi.org/10.1007/s11051-013-1739-6
D.D. La, S.V. Bhosale, L.A. Jones, N. Revaprasadu, S.V.J.C. Bhosale, ChemistrySelect 2(11) (2017) 3329-3333. https://doi.org/10.1002/slct.201700473
N.N. Huyen, N.T. Anh, T.L.H. Phung, N.X. Dinh, N.T. Vinh, T.T. Loan, D.L. Vu, A.T.J.J.o.T.E.S. Le, Journal of The Electrochemical Society 169 (2022) 106517.
L.V. de Faria, T.P. Lisboa, N.d.S. Campos, G.F. Alves, M.A.C. Matos, R.C. Matos, R.A.A. Munoz, Analytica Chimica Acta 1173 (2021) 338569. https://doi.org/10.1016/j.aca.2021.338569
N.A. Shad, S.Z. Bajwa, N. Amin, A. Taj, S. Hameed, Y. Khan, Z. Dai, C. Cao, W.S. Khan, Journal of Hazardous Materials 367 (2019) 205-214. https://doi.org/10.1016/j.jhazmat.2018.12.072
M. Yadav, V. Ganesan, R. Gupta, D.K. Yadav, P.K. Sonkar, Microchemical Journal 146 (2019) 881-887. https://doi.org/10.1016/j.microc.2019.02.025
Downloads
Published
Issue
Section
How to Cite
Share
Funding data
-
Asahi Glass Foundation
Grant numbers AGF.2023-02