Characterizations of Fe2O3/TiO2 composites fabricated from titanium slag

Authors

  • Mac Dinh Thiet Viet Tri University of Industry Author
  • Nguyen Thi Anh Thu Hanoi University of Industry Author
  • Nguyen Duc Thieu Hanoi University of Industry Author
  • Nham Duc Thinh Hanoi University of Industry Author
  • Phung Viet Hai Viet Tri University of Industry Author
  • Phan Thanh Xuan Institute of Chemistry and Materials, Academy of Military Science and Technology Author
  • Ngo Minh Tien Institute of Chemistry and Materials, Academy of Military Science and Technology Author
  • Tran Van Chinh Institute of Chemistry and Materials, Academy of Military Science and Technology Author

DOI:

https://doi.org/10.51316/jca.2023.051

Keywords:

Fe2O3/TiO2, mixed oxide, titanium slag, composites

Abstract

In this study, Fe2O3/TiO2 composites were successfully fabricated by a simple approach for treating titanium slag with dilute sulfuric acid, followed by a ball-milling process and calcination at a temperature of 400-800 oC in air. The resultant Fe2O3/TiO2 composites were characterized by using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), the N2 adsorption-desorption isotherm, and UV–vis diffuse reflectance spectroscopy. The effects of the concentration of sulfuric acid and the calcinated temperature on the formation of the Fe2O3/TiO2 composites were investigated in detail. The obtained Fe2O3/TiO2 composite has a BET surface area, energy bandgap, and pH point of zero charge of 76.65 m2/g, 2,09 eV, and 8,45, respectively. Therefore, this as-prepared Fe2O3/TiO2 composite could be a promising and cost-effective adsorbent for the effective removal of heavy metals and photodegradation of dyes from an aqueous environment.

Downloads

Download data is not yet available.

References

G. Chen, J. Chen, C. Srinivasakannan, J. Peng, Hight Temperature Materials and Processes 31 (2012) 187. https://doi.org/10.1515/htmp-2011-0148

W. Phoohinkong, W. Yimwan, W. Mekprasart, W. Pecharapa, Suranaree Journal of Science Technology 23 (2016).

S. Anuradha, K. Raj, V. Vijayaraghavan, B. Viswanathan, Indian Journal of Chemistry (2014).

C. Van Tran, P.T. Nguyen, D.A. Nguyen, T.T. Nguyen, B. Thanh Le, P.H.T. Nguyen, D. Duong La, Advances in Natural Sciences: Nanoscience Nanotechnology 10 (2019) 015014.

https://doi.org/10.1088/2043-6254/ab0d1d

J.C. Bullen, J.P. Kenney, S. Fearn, A. Kafizas, S. Skinner, D.J. Weiss, Journal of Colloid Interface Science 580 (2020) 834. https://doi.org/10.1016/j.jcis.2020.06.119

L. Yu, X. Peng, F. Ni, J. Li, D. Wang, Z. Luan, Journal of hazardous materials 246 (2013) 10. https://doi.org/10.1016/j.jhazmat.2012.12.007

J. Zhu, W. Zheng, B. He, J. Zhang, M. Anpo, Journal of Molecular Catalysis A: Chemical 216 (2004) 35. https://doi.org/10.1016/j.jhazmat.2012.12.007

M. Kang, S.-J. Choung, J.Y. Park, Catalysis Today 87 (2003) 87.

https://doi.org/10.1016/j.cattod.2003.09.011

W. Zhou, H. Fu, K. Pan, C. Tian, Y. Qu, P. Lu, C.-C. Sun, The Journal of Physical Chemistry C 112 (2008) 19584. https://doi.org/10.1021/jp806594m

M. D’Arcy, D. Weiss, M. Bluck, R. Vilar, Journal of colloid interface science 364 (2011) 205. https://doi.org/10.1016/j.jcis.2011.08.023.

T. Tao, A.M. Glushenkov, H. Liu, Z. Liu, X.J. Dai, H. Chen, S.P. Ringer, Y. Chen, The Journal of Physical Chemistry C 115 (2011) 17297. https://doi.org/10.1021/jp203345s.

P. García-Muñoz, G. Pliego, J. Zazo, A. Bahamonde, J. Casas, Journal of environmental chemical engineering 4 (2016) 542. https://doi.org/10.1016/j.jece.2015.11.037.

J.E. Silveira, A.R. Ribeiro, J. Carbajo, G. Pliego, J.A. Zazo, J.A. Casas, Water Research 200 (2021) 117250. https://doi.org/10.1016/j.watres.2021.117250

T. Aparna, R. Sivasubramanian, Materials Chemistry physics 233 (2019) 319.

https://doi.org/10.1016/j.matchemphys.2019.05.073

I. Amar, A. Sharif, M. Ali, S. Alshareef, F. Altohami, M. Abdulqadir, M. Ahwidi, Chemical Methodologies 4 (2020) 1. https://doi.org/10.33945/SAMI/CHEMM.2020.1.1

G. Chen, J. Pu, J. Chen, J. Peng, C. Srinivasakannan, R. Ruan, Royal Society Open Science 5 (2018) 171858. https://doi.org/10.1098/rsos.171858

N.T.H.P. Trần Văn Chinh, Lã Đức Dương, Phan Thanh Xuân, Phùng Khắc Nam Hồ, Tạp chí Nghiên cứu Khoa học và Công nghệ quân sự Số đặc san (2021) 125

S. Ma, J. Gu, Y. Han, Y. Gao, Y. Zong, Z. Ye, J. Xue, ACS omega 4 (2019) 21063. https://doi.org/10.1021/acsomega.9b02411

A. Escobedo-Morales, I. Ruiz-López, M.d. Ruiz-Peralta, L. Tepech-Carrillo, M. Sánchez-Cantú, J. Moreno-Orea, Heliyon 5 (2019) e01505. https://doi.org/10.1016/j.heliyon.2019.e01505

C. Van Tran, D.D. La, P.N.T. Hoai, H.D. Ninh, P.N.T. Hong, T.H.T. Vu, A.K. Nadda, X.C. Nguyen, D.D. Nguyen, H.H. Ngo, Journal of hazardous materials 420 (2021) 126636. https://doi.org/10.1016/j.jhazmat.2021.126636

Published

30-09-2023

Issue

Section

Full Articles

How to Cite

Characterizations of Fe2O3/TiO2 composites fabricated from titanium slag. (2023). Vietnam Journal of Catalysis and Adsorption, 12(3), 83-88. https://doi.org/10.51316/jca.2023.051

Share

Most read articles by the same author(s)

Similar Articles

1-10 of 133

You may also start an advanced similarity search for this article.