Adsorption Characteristics of Antibiotic Oxytetracycline on CoFe2O4@Au nanocomposite
DOI:
https://doi.org/10.62239/jca.2024.046Keywords:
OTC, adsorption, CoFe2O4, CoFe2O4@AuAbstract
Oxytetracycline (OTC) is a widely used broad-spectrum antibiotic for treating bacterial infections in humans and animals. Gold nanoparticles (AuNPs) and cobalt iron oxide (CFO) were combined to create composite magnetic materials designed for the selective adsorption of OTC. The strong affinity of AuNPs for the amine group in the OTC molecule allows for the preferential adsorption of OTC. Simultaneously, the high magnetism of CFO enables the efficient retrieval of materials from the sample solution. The CFO@Au nanomaterials showed an enhanced adsorption capacity of 23.75 mg/g at optimum conditions of pH 7.0; an adsorption time of 90 min, and an adsorbent mass of 0.05g. The adsorption isotherm was in accordance with a Langmuir monolayer model while the kinetic adsorption follows pseudo–second-order kinetic model.. This study provides a simple method for the effective adsorption of OTC as well as a suggestion for the adsorption of other amine-containing substances.
Downloads
References
A. Yegorova, E. Vityukova, S. Beltyukova, and A. Duerkop, Microchem. J. 83 1 (2006) 1–6. https://doi.org/10.1016/j.microc.2005.12.005.
H. Petkovic, T. Lukežic, and J. Šuškovic, Food Technol. Biotechnol. 55 1 (2017) 3–13. https://doi.org/10.17113/ft b.55.01.17.4617
P. S. McManus, V. O. Stockwell, G. W. Sundin, and A. L. Jones, Annu. Rev. Phytopathol. 40 18 (2002) 443–465. https://doi.org/10.1146/annurev.phyto.40.120301.093927
Y. Song, E. A. Sackey, H. Wang, and H. Wang, PLoS One 14 11 (2019) 1–13. https://doi.org/10.1371/journal.pone.0225335
M. H. Huang, Y. D. Yang, D. H. Chen, L. Chen, and H. D. Guo, Process Saf. Environ. Prot. 90 2 (2012) 141–146. https://doi.org/10.1016/j.psep.2011.08.008
M. Luo, S. Yang, S. Shen, and Y. Li, Int. J. Environ. Res. Public Health 17 3 (2020). https://doi.org/10.3390/ijerph17030914
C. Cannas, A. Ardu, D. Peddis, C. Sangregorio, G. Piccaluga, and A. Musinu, J. Colloid Interface Sci. 343 2, (2010) 415–422. https://doi.org/10.1016/j.jcis.2009.12.007
A. Kraus, K. Jainae, F. Unob, and N. Sukpirom, J. Colloid Interface Sci. 338 2 (2009) 359–365. https://doi.org/10.1016/j.jcis.2009.06.045
J. Jiang, Y. M. Yang, and L. C. Li, Mater. Lett. 62 12–13 (2008) 1973–1975. https://doi.org/10.1016/j.matlet.2007.10.063
M. Srivastava, A. K. Ojha, S. Chaubey, and A. Materny, J. Alloys Compd. 481 1–2 (2009) 515–519. https://doi.org/10.1016/j.jallcom.2009.03.027
K. S. Rao, G. S. V. R. K. Choudary, K. H. Rao, and C. Sujatha, Procedia Mater. Sci. 10 Cnt 2014 (2015) 19–27. https://doi.org/10.1016/j.mspro.2015.06.019.
M. S. Najafinejad, P. Mohammadi, M. Mehdi Afsahi, and H. Sheibani, Mater. Sci. Eng. C 98 (2019) 19–29. https://doi.org/10.1016/j.msec.2018.12.098
P. T. K. Thu et al., J. Mater. Sci. Mater. Electron. 30 18 (2019) 17245–17261. https://doi.org/10.1007/s10854-019-02072-8
T. N. M. Pham et al., Adsorpt. Sci. Technol. (2022) 15–20. https://doi.org/10.1155/2022/9759759
M. H. Armbruster and J. B. Austin, J. Am. Chem. Soc. 60 2 (1938) 467–475. https://doi.org/10.1021/ja01269a066
E. E. Jasper, V. O. Ajibola, and J. C. Onwuka, Appl. Water Sci. 10 6 (2020) 1–11. https://doi.org/10.1007/s13201-020-01218-y
H. Freundlich, Zeitschrift für Phys. Chemie 57U 1 (1907) 385–470. https://doi.org/10.1515/zpch-1907-5723
P. K. Jain, K. S. Lee, I. H. El-sayed, and M. A. El-sayed, (2006) 7238–7248.
S. Alekseeva, I. I. Nedrygailov, and C. Langhammer, ACS Photonics 6 6 (2019) 1319–1330. https://doi.org/10.1021/acsphotonics.9b00339
A. O. Baskakov et al., Appl. Surf. Sci. 422 (2017) 638–644. https://doi.org/10.1016/j.apsusc.2017.06.029