Influence of hydrothermal time on the formation of SAPO-56 structure and its catalytic activity of removal NOx by NH3-SCR with Cu/SAPO-56
DOI:
https://doi.org/10.51316/jca.2022.001Keywords:
AFX, SAPO-56, Cu/SAPO-56, Cu/ZSM-5Abstract
The SAPO-56 molecular sieve material was prepared under hydrothermal conditions at 200 °C with different hydrothermal times using precursors including Al(OH)3, LUDOX AS-30, H3PO4, and TMHD (N,N,N′,N′-tetramethyl-hexane-1,6-diamine) as an organic structure-directing agent. The samples were characterized by X-ray diffraction, field emission scanning electron microscopes, Energy-dispersive X-ray spectroscopy, NH3 temperature - programmed desorption, N2 adsorption-desorption, and UV-Vis Diffuse Reflectance Spectroscopy methods. Electron paramagnetic resonance technique was applied to determine isolated Cu2+ ions in the framework. Although materials shared the same AFX framework structure, they owned different physicochemical properties, especially in terms of crystal size, surface area, and acidity. Next, the catalytic activity of removal NOx of Cu/SAPO-56 and Cu/ZSM-5 using commercial ZSM-5 as support with the loading of 3 wt%Cu synthesized by aqueous ion-exchange method was assessed in the selective catalytic reduction with NH3.
Downloads
References
Y. Sakamoto, K. Shoji, M. T. Bui, T. H. Pham, T. A. Vu, B. T. Ly, Y. Kajii, Atmospheric Pollution Research 9 (2018) 544-551. https://doi.org/10.1016/j.apr.2017.12.001
Thanh Huyen Vuong, Doan Anh Tuan, Thanh Huyen Pham, Angelika Brückner, Vietnam Journal of Catalysis and Adsorption 7 (2018) 2.
T. Yu, D. Fan, T. Hao, J. Wang, M. Shen, and W. Li, Chemical Engineering Journal 243 (2014) 159–168. https://doi.org/10.1016/j.cej.2014.01.008
P. Jaworski, Ł. J. Kapusta, S. Jarosiński, A. Ziółkowski, A. C. Capetillo, and R. Grzywnowicz, J. KONES., Powertrain Transportation (2015) 139–146. https://doi.org/10.5604/12314005.1168463
J. Kašpar, P. Fornasiero, and N. Hickey, Catalysis Today 77 (2003) 419–449. https://doi.org/10.1016/S0920-5861(02)00384-X
Ogura, M.; Shimada, Y.; Ohnishi, T.; Nakazawa, N.; Kubota, Y.; Yokoi, T.; Ehara, M.; Shimizu, K.; Tsunoji, N, Catalysts 11 (2021) 163. https://doi.org/10.3390/catal11020163
Chokkalingam, W. Chaikittisilp, K. Iyoki, H. Keoh, RSC Advances 9 (2019) 16790-16796. https://doi.org/10.1039/c9ra02787d
S. T. Wilson, R. W. Broach, C. S. Blackwell, C. A. Bateman, N. K. Mcguire, R. M. Kirchner, Microporous and Mesoporous Materials 28 (1999) 125–137. https://doi.org/10.1016/S1387-1811(98)00293-5
S. Wilson, P. Barger, Microporous and Mesoporous Materials 29 (1999) 117–126. https://doi.org/10.1016/S1387-1811(98)00325-4
L. Xu, Z. Liu, A. Du, Y. We`i, and Z. Sun, Studies in Surface Science and Catalysis 147 (2004) 445–450. https://doi.org/10.1016/S0167-2991(04)80092-2
S. Mohan, P. Dinesha, S. Kumar, Chemical Engineering Journal 384 (2020) 123253. https://doi.org/10.1016/j.cej.2019.123253
Chen, H.-Y., Fundamental and Applied Catalysis 2014, 123–147. https://doi.org/10.1007/978-1-4899-8071-7_5
D. W. Fickel, E. D’Addio, J. A. Lauterbach, and R. F. Lobo, Applied Catalysis B: Environmental 102 (2011) 441–448. https://doi.org/10.1016/j.apcatb.2010.12.022
T. Doan, K. Nguyen, P. Dam, T.H. Vuong, M.T. Le, H.P. Thanh. Journal of Chemistry 2019. https://doi.org/10.1155/2019/6197527.
Z. Xie, M. Zhu, A. Nambo, J. B. Jasinski, and M. A. Carreon, Dalton Transactions 42 (2013) 6732–6735. https://doi.org/10.1039/C3DT00064H
S. Zhong, S. Song, B. Wang, N. Bu, X. Ding, R. Zhou, W. Jin, Microporous and Mesoporous Materials 263 (2017) 11-20. https://doi.org/10.1016/j.micromeso.2017.11.034
Z. Yan, B. Chen, and Y. Huang, Solid State Nuclear Magnetic Resonance 35 (2009) 49–60. https://doi.org/10.1016/j.ssnmr.2008.12.006
J. Wang, T. Yu, X. Wang, G. Qi, J. Xue, M. Shen, W. Li, Applied Catalysis B: Environmental 127 (2012) 137–147. https://doi.org/10.1016/j.ssnmr.2008.12.006
K. Leistner, F. Brüsewitz, K. Wijayanti, A. Kumar, K. Kamasamudram, L. Olsson, Energies 4(10) (2017) 489. https://doi.org/10.3390/en10040489
T. Doan, A. Dang, D. Nguyen, K. Dinh, P. Dam, T. H. Vuong, M. T. Le, P. T. Huyen, Catalysis in Industry 13 (2021) 27–37. https://doi.org/10.1134/S2070050421010098
T. Yu, D. Fan, T. Hao, J. Wang, M. Shen, and W. Li, Chemical Engineering Journal 243 (2014) 159–168. https://doi.org/10.1016/j.cej.2014.01.008
P. S. Metkar, M. P. Harold, and V. Balakotaiah, Chemical Engineering Science 87 (2013) 51–66. https://doi.org/10.1016/j.ces.2012.09.008
R. Fahami et al., Reaction Chemistry & Engineering 4 (2019) 1000–1018. https://doi.org/10.1039/C8RE00290H
X. Liu, X. Wu, D. Weng, Z. Si, and R. Ran, Catalysis Today 281 (2017) 596–604. https://doi.org/10.1016/j.cattod.2016.05.021
W. L. Tie Yu, Jun Wang, Meiqing Shen, Catalysis Science & Technology 3 (2013) 3234-3241. https://doi.org/10.1039/C3CY00453H
M. Sedighi, M. Ghasemi, M. Sadeqzadeh, and M. Hadi Powder Technology, 291 (2016) 131–139. https://doi.org/10.1016/j.powtec.2015.11.066
S. Shwan, Metal-exchanged zeolites for NH3-SCR applications - Activity and Deactivation studies. Gothenburg: Chalmers University, 2014.
L. Wang, W. Li, S. J. Schmieg, and D. Weng, Journal of Catalysis 324 (2015) 98–106. https://doi.org/10.1016/j.jcat.2015.01.011
Downloads
Published
Issue
Section
How to Cite
Share
Funding data
-
Quỹ Đổi mới sáng tạo Vingroup
Grant numbers VINIF.2020.TS.124 -
National Foundation for Science and Technology Development
Grant numbers 104.05-2018.306