Fabrication and characterisation of Fe2O3/chitosan aerogel-like spheres
DOI:
https://doi.org/10.51316/jca.2021.012Keywords:
Biopolymer, Fe2O3/chitosan, nanocomposite, aerogel-like spheresAbstract
Presently, biopolymer materials have been given more attention for their outstanding properties, high efficiencies and promising applications in various fields. In this study, Fe2O3/chitosan aerogel-like spheres were successfully prepared from chitosan and FeCl3 by sol–gel process and freeze-drying to provide high-surface area materials. The factors affecting the material synthesis have been studied. The asprepared Fe2O3/chitosan material was characterized by Infrared Spectroscopy (IR), X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM) methods. The results showed that the aerogel spheres have a hollow structure made of chitosan nanofibril networks. Fe2O3 nanoparticles get high crystallinity and have an average particle size of 33 nm.
Downloads
References
Shahid-ul-Islam, M. Shahid, F. Mohammad, Ind. Eng. Chem. Res. 52 (2013) 5245–5260. https://:10.1021/ie303627x.
V. Zargar, M. Asghari, A. Dashti, ChemBioEng Rev. 3 (2015) 204–226. https://10.1002/cben.201400025.
F. Quignard, R. Valentin, F. Di Renzo, New J. Chem., 32 (2008), 1300–1310. https://10.1039/b808218a.
S. Wei, Y. C. Ching, C. H. Chuah, Carbohydr. Polym. 231 (2020) 115744. https://10.1016/j.carbpol.2019.115744.
M.A. Al-Anber, W. Al-Quaisi, J. Environ. Pollut. Manag. 2 (2019) 105–117. https:// 10.1007/BF02708296.
S. Rashid, C. Shen, X. Chen, S. Li, Y. Chen, Y. Wen, J. Liu, RSC Adv. 5 (2015) 90731–90741. https://10.1039/C5RA14711E.
M. Rhazi, J. Desbri, A. Tolaimate, M. Rinaudo, P. Vottero, A. Alagui, M. El Meray, Eur. Polym. J. 38 (2002), 1523–1530. https://10.1016/S0014-3057(02)00026-5
T. Altun, Environ. Eng. Res., 25 (2020) 426–438. https:// doi.org/10.4491/eer.2019.112.
A. Badawi, E. M. Ahmed, N. Y. Mostafa N.Y., F. A. Wahab, S. E. Alomairy, J. Mater. Sci. Mater. Electron., 28 (2017) 10877–10884. https://:10.1007/s10854-017-6866-x.
B.R. Broujeni, A. Nilchi, A.H. Hassani, R. Saberi, Water Sci. Technol. 78, 708–719. https://10.2166/wst.2018.343.
S. C. Bhatia, N. Ravi, Biomacromolecules 1 (2000) 413–417. https://:10.1021/bm0002959.
Đặng Thị Thanh Nhàn, Lê Lâm Sơn, Lê Quốc Thắng, Tạp chí Hóa học 56 (2018) 384-388. https:// 10.1002/vjch.201800046
S. Patnaik, P. C. Mishra, R. N. Nayak, A. K. Giri, J. Anal. Bioanal. Tech. 7 (2016) 326-332. https://: 10.4172/2155-9872.1000326
M. Tadic, D. Trpkov, L. Kopanja, S. Vojnovic, M. Panjan, J. Alloys Compd. 792 (2019) 599–609. https://:10.1016/j.jallcom.2019.03.414.
M. Wang, Y. Ma, Y. Sun, S. Y. Hong, S. K. Lee, B. Yoon, L. Chen, L. Ci, J.-D. Nam, X. Chen, J. Suhr, Sci. Rep., 7 (2017) p. 10854. https://10.1038/s41598-017-18302-0.
Hernandez R.B., Franco A.P., Yola O.R., A. López-Delgado, J. Felcman, M. A. L. Recio, A. L. R. Mercê, J. Mol. Struct. 877 (2008) 89–99. https://10.1016/j.molstruc.2007.07.024.
O. M. Lemine. Adv. Mater. Sci. Eng., 2014 (2014), 1–6. https:// dx.doi.org/10.1155/2014/589146.
Y. Wang, A. Muramatsu, T. Sugimoto, Colloids Surfaces A Physicochem. Eng. Asp. 134 (1998) 281–297. https://doi.org/10.1016/S0927-7757(97)00102-7.