Study on the adsorption of methylene blue from aqueous solution using hydrogel glucomannan/graphene oxide
DOI:
https://doi.org/10.51316/jca.2021.010Keywords:
Glucomannan/graphene oxide hydrogel, Methylene blue, AbsorptionAbstract
Glucomannan/graphene oxide (GM/GO) hydrogel was synthesized by using calcium hydroxide as the crosslinker. The synthesized material was characterized by using IR, XRD, SEM, EDX and RAMAN technology. The composite hydrogel was used for removal of organic dyes from aqueous solution. The results showed that the GM/GO hydrogel had a porous structure and a high adsorption capacity toward methylene blue (MB). The pseudo-second-order kinetic model could fit the rate equation of MB adsorption onto the GM/GO hydrogel. The adsorption of MB onto GM/GO hydrogel was a spontaneous process. In addition, the equilibrium adsorption isotherm data indicated that equilibrium data were fitted to the Langmuir isotherm and the maximum dye adsorption capacity was 198,69 mg.g-1. Moreover, the hydrogel was stable and easily recovered and adsorption capacity was around 97% of the initial saturation adsorption capacity after being used five times.
Downloads
References
G. Crini., Biores. Technol. 97 (2006) 1061-1085. https://doi.org/10.1016/j.biortech.2005.05.001
R.D. Ambashta, M. Sillanpää, J. Hazar. Mater. 180 (2010) 38-49. https://doi.org/10.1016/j.hazmat.2010.04.105
B. Padhi, International J. Environ. Sci. 3 (2012) 940. https://doi.org/10.6088/ijes.2012030133002
D. Parasuraman, M.J. Serpe, ACS Appl. Mater. Inter. 3 (2011) 2732-2737. https://doi.org/10.1021/am2005288
M.M. Hamed, I. Ahmed, S. Metwally, J. Indus. Eng. Chem. 20 (2014) 2370-2377. https://doi.org/10.1016/j.jiec.2013.10.015
A.A. Adeyemo, I.O. Adeoye, O.S. Bello, Toxicological Environ. Chem. 94 (2012) 1846-1863. https://doi.org/10.1080/02772248.2012.744023
X. Shi, Y. Zheng, G. Wang, Q. Lin, J. Fan, RSC Adv. 4 (2014) 47056-47065. https://doi.org/10.1039/C4RA09640A
H. Zhang, D. Zhai, Y. He, RSC Adv. 4 (2014) 44600-44609. https://doi.org/10.1039/C4RA07576E
P. Capek, Carbo. poly. 75 (2009) 356-359. https://doi.org/10.1016/j.carbpol.2008.07.017
F. Liu, X.G. Luo, X.Y. Lin, Mater. Sci. Forum. Trans Tech Publ, 2009, 611-614.
https://doi.org/10.4028/www.scientific.net/MSF.620-622.611
X. Gu, Y. Ning, Y. Yang, C. Wang, RSC Adv. 4 (2014) 3211-3218. https://doi.org/10.1039/C3RA44993A
J. Yuan, J. Zhu, H. Bi, Z. Zhang, S. Chen, S. Liang, X. Wang, J. Colloid Interf. Sci. 300 (2006) 100-104. https://doi.org/10.1016/j.jcis.2006.03.029.
V. Thi Thanh Chau, H. Thi MinhThanh, P. Dinh Du, T. Thanh Tam Toan, T. Ngoc Tuyen, T. Xuan Mau, D. Quang Khieu, J. Chem. 2018 (2018) 311-325. https://doi.org/ 10.1155/2018/8616921.
R.R. Sheha, A.A. El-Zahhar, J. Hazar. Mater. 150 (2008) 795-803. https://doi.org/ 10.1016/j.jhazmat.2007.05.042.
F. Tuz Johra, J. Lee, W.-G. Jung, 2014, 2883–2887. https://doi.org/10.1016/j.jiec.2013.11.022
S. Peng, X. Fan, S. Li, J. Chilean Chem. Soc. 58 (2013) 2213-2217. https://doi.org/10.4067/S0717-97072013000400067
J. Oh, J.-H. Lee, J.C. Koo, H.R. Choi, Y. Lee, T. Kim, N.D. Luong, J.-D. Nam, J. Mater. Chem. 20 (2010) 9200-9204. https://doi.org/10.1039/C0JM00107D
Y. Yuan, Z. Yan, R.J. Mu, L. Wang, J. Gong, X. Hong, M.H. Haruna, J. Pang, J. Appl. Poly. Sci. 134 (2017). https://doi.org/10.1002/app.45327
L. Gan, H. Li, L. Chen, L. Xu, J. Liu, A. Geng, C. Mei, S. Shang, Col. Poly. Sci. 296 (2018) 607-615. https://doi.org/10.1007/s00396-018-4281-3
A. Ashori, H. Rahmani, R. Bahrami, Poly. Testing 48 (2015) 82-88. https://doi.org/10.1016/j.polymertesting.2015.09.010