Synthesized MgFe2O4 nanoparticles to remove Pb2+ from aqueous solution
DOI:
https://doi.org/10.62239/jca.2023.077Keywords:
Nanosized MgFe2O4, adsorption, Pb2+, Langmuir and Freundlich modelsAbstract
In the present paper, nanosized magnesium ferrite (MgFe2O4) material is synthesized by the hydrothermal method. The size and microstructure of magnesium ferrite were analyzed based on X-ray diffraction (XRD), scanning electron microscopy (SEM). The nitrogen adsorption-desorption was used for determination of surface area (Brunauer – Emmett – Teller (BET)) and porosity of the fabricated material. The adsorption behavior of Pb2+ using a new magnetic adsorbent is investigated. The adsorption characteristic and Pb2+ removal efficiency of the adsorbent have been determined by investigating the influence of operating variables such as dosage of manganese ferrite. The maximum Pb2+ sorption capacity was found to be 16,08 (mg/g) and obtained using 0,1 g/L MgFe2O4 when pH equals 5, a temperature of 25 °C, and contact time as 24 h. The Langmuir and Freundlich models were used to fit the experimental data and these showed good correlations.
Downloads
References
Kefeni KK, Mamba BB, Msagati TA. Separation Purification Technology 188 (2017) 399-422. https://doi.org/10.1016/j.seppur.2017.07.015.
Baig RN, Nadagouda MN, Varma RS. Coordination Chemistry Reviews 287 (2015) 137-156. https://doi.org/10.1016/j.ccr.2014.12.017
Jia Z, Qin Q, Liu J, Shi H, Zhang X, Hu R, et al. T Superlattices Microstructures 82 (2015) 174-187. https://doi.org/10.1016/j.spmi.2015.01.028
Wang L, Lei T, Ren Z, Jiang X, Yang X, et al. Journal of Electroanalytical Chemistry 864 (2020) 114-125. https://doi.org/10.1016/j.jelechem.2020.114065
Huang L, Wu B, Wu Y, Yang Z, Yuan T, Alhassan SI, et al. Journal of colloid interface science 565 (2020) 465-473. https://doi.org/10.1016/j.jcis.2020.01.035
Zhang S, Shi Q, Christodoulatos C, Korfiatis G, Meng X. Chemical Engineering Journal. 370 (2019) 1262-1273. https://doi.org/10.1016/j.cej.2019.03.294
Kuganathan N, Anurakavan S, Abiman P, Iyngaran P, Gkanas EI, Chroneos A. Physica B: Condensed Matter 600 (2021) 412-439.https://doi.org/10.1016/j.physb.2020.412639
Park J-H, Ok YS, Kim S-H, Cho J-S, Heo J-S, Delaune RD, et al. Chemosphere 142 (2016) 77-83. https://doi.org/10.1016/j.chemosphere.2015.05.093.
He X, Che R, Wang Y, Li Y, Wan L, Xiang X. Journal of Environmental Chemical Engineering 3(3) (2015) 1720-1734. https://doi.org/10.1016/j.jece.2015.06.013
Hammache Z, Soukeur A, Omeiri S, Bellal B, Trari MJJoMSMiE. Journal of Alloys and Compounds, 2011, Vol. 509(25): 7038-7041.
https://doi.org/10.1016/j.jallcom.2011.03.123
Sivakumar N, Gnanakan S, Karthikeyan K, Amaresh S, Yoon W, Park G, et al, 509(25) 2011 7038-7041. https://doi.org/10.1016/j.jallcom.2011.03.123
Arimi A, Megatif L, Granone LI, Dillert R, Bahnemann DWJJoP, Chemistry PA. Journal of Photochemistry and Photobiology A: Chemistry 366 (2018) 118-126. https://doi.org/10.1016/j.jphotochem.2018.03.014
Srivastava V, Sharma Y, Sillanpää M, Applied Surface Science 338 (2015) 42-54. https://doi.org/10.1016/j.apsusc.2015.02.072
Ciocărlie L, Negrea A, Ciopec M, Duteanu N, Negrea P, Ianasi P, et al, Materials Chemistry 15(20) 2022 1 -17.
Ivanets A, Srivastava V, Roshchina MY, Sillanpää M, Prozorovich V, Pankov V, Ceramics International 44(8) 2018 9097-9104. https://doi.org/10.1016/j.ceramint.2018.02.117.
Becker A, Kirchberg K, Marschall RJZfPC. Chem 234(4) 2020 645-654. https://doi.org/10.1515/zpch-2019-1430
Gonzales-Weimuller M, Zeisberger M, Krishnan KM, Journal of magnetism magnetic materials 321(13) (2009) 1947-1950. https://doi.org/10.1016/j.jmmm.2008.12.017
Zhang D, Zhang X, Ni X, Song J, Zheng H, Chemical Physics Letters. 426(1-3) 2006 120-130. https://doi.org/10.1016/j.cplett.2006.05.100
Rozman M, Drofenik M, Journal of the American Ceramic Society 78(9) 1995 2449-2455. https://doi.org/10.1111/j.1151-2916.1995.tb08684.x
Guo P, Cui L, Wang Y, Lv M, Wang B, Zhao X, Langmuir, 2013, vol. 29(28): 8997-9003. https://doi.org/10.1021/la401627x
Tsai W-C, Ibarra-Buscano S, Kan C-C, Futalan CM, Dalida MLP, Wan M-W, Desalination Water Treatment 57(21) (2016) 9799-9812. https://doi.org/10.1080/19443994.2015.1035676
Guo Y, Zhu Y, Yuan C, Wang C. Materials Letters 199 (2017) 101-114. https://doi.org/10.1016/j.matlet.2017.04.069
Rahman Mha. Physical and Chemical Properties, Sains Malaysiana 49(9) (2020) 2261-2275.
http://dx.doi.org/10.17576/jsm-2020-4909-23
Hassan MR, Fikry RM, Yakout SM. 146(4):1-13 (2020)
Meng M, Yang L, Wei B, Li H, Yu JJJoE. Journal of Ecology and Rural Environment. 34(11) (2018) 1019-1026.
Freudlich HJZPC, Unber die adsorption in losungen. 57 (1906) 385-470.
Sidhaarth KA, Jeyanthi J. Asian Journal of Chemistry. 25(17) (2013) 9920-9936.
Wu Z, Gu Z, Wang X, Evans L, Guo H. Environmental Pollution 121(3) (2003) 469-475. https://doi.org/10.1016/S0269-7491(02)00272-5
Xu D, Tan X, Chen C, Wang X. Journal of hazardous materials 154(1-3) (2008) 407-416.
https://doi.org/10.1016/j.jhazmat.2007.10.059
Han R, Zou W, Zhang Z, Shi J, Yang J. Journal of Hazardous Materials 137(1) (2006) 384-395. https://doi.org/10.1016/j.jhazmat.2006.02.021
Li Y-H, Di Z, Ding J, Wu D, Luan Z, Zhu Y. 39(4) (2005) 605-619. https://doi.org/10.1016/j.watres.2004.11.004
Tu Y-J, You C-F, Chen M-H, Duan Y-P, Journal of The T Taiwan Institute of Chemical Engineers 71: (2017) 197-205. https://doi.org/10.1016/j.jtice.2016.12.006
Gupta SS, Bhattacharyya KG. Applied Clay Science 30(3-4) (2005) 199-208. https://doi.org/10.1016/j.clay.2005.03.008
Hassan MR, Aly MI, AQUA—Water Infrastructure, Ecosystems Society 70(6) (2021) 901-1120. https://doi.org/10.2166/aqua.2021.132