Unveiling the Electronic and Optical Properties of (TiO2)7 Cluster Supported on Fe-MIL-88B: A Theoretical Insight

Authors

  • Ngo Hoang Lan Faculty of Chemistry, Hanoi National University of Education
  • Vu Thi Huong Faculty of Chemistry, Hanoi National University of Education
  • Bui Cong Trinh Institute for Technology of Radioactive and Rare Elements
  • Nguyen Ngoc Ha Faculty of Chemistry, Hanoi National University of Education
  • Nguyen Thi Thu Ha Faculty of Chemistry, Hanoi National University of Education

DOI:

https://doi.org/10.62239/jca.2025.004

Keywords:

TiO2 , Fe-MIL-88B, GFN1-xTB, photocatalyst

Abstract

This study investigates the structural, electronic, and optical properties of a composite material system composed of the (TiO2)7 cluster and Fe-MIL-88B. The structural optimization and interaction energy calculations were performed using the GFN1-xTB method. The interaction between TiO2 and Fe-MIL-88B is quantified through these calculations, revealing a thermodynamically favorable formation with an interaction energy of -199.54 kJ mol⁻1. Bond order analysis and interatomic distances indicate weak chemical bonding between Ti and C atoms, further supported by a total bond order of 0.746. The electronic properties, including ionization potential (IP), electron affinity (EA), and global electrophilicity index (GEI), were computed, showing that the TiO2/Fe-MIL-88B composite exhibits enhanced electron-accepting behavior. UV-Vis spectral analysis and band gap calculations reveal that the composite demonstrates a reduced band gap compared to its individual components, facilitating better electron-hole separation and charge transfer. The findings highlight the potential of the TiO2/Fe-MIL-88B composite for photocatalytic applications, offering valuable insights into the development of hybrid materials for environmental remediation and renewable energy production.

Downloads

Download data is not yet available.

References

R.S. Haszeldine, Science 325(5948) (2009) 1647–1652. http://doi.org/10.1126/science.1172246

G. Zhao, X. Huang, X. Wang, X. Wang, J. Mater. Chem. A 5(41) (2017) 21625–21649. https://doi.org/10.1039/C7TA07290B

Daza Y A, Kent R A, Yung M M, Kuhn J N, Ind Eng Chem Res, 53(14) (2014) 5828–5837. https://doi.org/10.1021/ie5002185

K.R. Thampi, J. Kiwi, M. Gratzel, Nature, 327 (1987) 506–508. https://doi.org/10.1038/327506a0

F. Bustamante, R. M. Enick, A.V. Cugini, R. P. Killmeyer, B. H. Howard, K. S. Rothenberger, M. V. Ciocco, B. D. Morreale, S. Chattopadhyay, S. Shi, AIChE Journal, 50(5) (2004) 1028-1041. https://doi.org/10.1002/aic.10099

Noji T, Jin T, Nango M, Kamiya N, et al, (2017), ACS Appl. Mater. Interfaces 2017, 9, 4, 3260–3265. https://doi.org/10.1021/acsami.6b12744

F.V. Bekun, A.A. Alola, S.A. Sarkodie, Sci. Total Environ. 657 (2019) 1023–1029. https://doi.org/10.1016/j.scitotenv.2018.12.104

N. Shehzad, M. Tahir, K. Johari, T. Murugesan, M. Hussain, et al., Journal of CO2 Utilization, 26 (2018) 98-122. https://doi.org/10.1016/j.jcou.2018.04.026

Z. Xiong, Z. Lei, Z. Xu, X. Chen, B. Gong, Y. Zhao, H. Zhao, J. Zhang, C. Zheng, Journal of CO2 Utilization, 18 (2017) 53-61,. https://doi.org/10.1016/j.jcou.2017.01.013

T. Ohno, N. Murakami, T. Koyanagi, Y. Yang, Journal of CO2 Utilization, 6 (2014) 17-25. https://doi.org/10.1016/j.jcou.2014.02.002

Y. Wang, B. Li, C. Zhang, L. Cui, S. Kang, X. Li, L. Zhou, Catalysis B: Environmental, Volumes 130–131 (2013) 277-284. http://doi.org/10.1016/j.apcatb.2012.11.019

C.C. Lo, C.H. Hung, C.S. Yuan, J.F. Wu , Solar Energy Materials and Solar Cells, 91(19) (2007) 1765-1774. https://doi.org/10.1016/j.solmat.2007.06.003

M. Mishra, D.M. Chun, Catalysis A: General, 498 (2015) 126-141. https://doi.org/10.1016/j.apcata.2015.03.023

P.T. Lan, N.H. Hao, N.V. Thuc, N.N. Ha, L.M. Cam, N.T.T. Ha, VNU Journal of Science: Natural Sciences and Technology, 39(4) (2023) 46-56. https://doi.org/10.25073/2588-1140/vnunst.5597

D. Xiang, Z. Wang, J. Xu, H. Shen, X. Zhang, N. Liu, Catalysts. 14 (2024) 528. https://doi.org/10.3390/catal14080528

Wang, D., Huang, R., Liu, W., Sun, D., & Li, Z. (2014), ACS Catal. 2014, 4, 12, 4254–4260. https://doi.org/10.1021/cs501169t

A. Zheng-wang, G.J. Kroes, J. Phys. Chem. B, 110(18) (2006) 8998–9007. https://doi.org/10.1021/jp056607p

N.T.T. Ha, H.T. Thao, N.N. Ha, Journal of Molecular Graphics and Modelling, 112 (2022) 108124. https://doi.org/10.1016/j.jmgm.2022.108124

C. Bannwarth, E. Caldeweyher, S. Ehlert, A. Hansen, P. Pracht, J. Seibert, S. Spicher, S. Grimme, WIREs Computational Molecular Science, 11(2) (2020) e1493. https://doi.org/10.1002/wcms.1493

Vicent-Luna, J. M., Apergi, S., & Tao, S. J., Chem. Inf. Model, 61(9) (2021) 4415–4424. https://doi.org/10.1021/acs.jcim.1c00432

Nurhuda, M., Perry, C. C., & Addicoat, M. A., Physical Chemistry Chemical Physics, 24(18) (2022) 10906-10914. https://doi.org/10.1039/D2CP00184E

Grimme, S. and Bannwarth, C., J. Chem. Phys. 145 (2016) 054103. https://doi.org/10.1063/1.4959605

Morrison, S. Roy (Stanley Roy). Electrochemistry at Semiconductor and Oxidized Metal Electrodes. Plenum Press, 1980.

Oleg D. Neikov, Stanislav S. Naboychenko and Nikolay A. Yefimov, Handbook of Non-Ferrous Metal Powders: Technologies and Applications, Elsevier Press, Second Edition, 2019, 271-311.

Published

01-04-2025

Issue

Section

Full Articles

How to Cite

Unveiling the Electronic and Optical Properties of (TiO2)7 Cluster Supported on Fe-MIL-88B: A Theoretical Insight. (2025). Vietnam Journal of Catalysis and Adsorption, 14(1), 15-19. https://doi.org/10.62239/jca.2025.004

Share

Funding data

Similar Articles

1-10 of 237

You may also start an advanced similarity search for this article.