Highly adsorptive removal of oxytetracycline in water environment using polyanion modified alumina nanoparticles
DOI:
https://doi.org/10.51316/jca.2023.030Keywords:
OTC, adsorption, α-Al2O3, water treatmentAbstract
In this study, adsorptive removal of an antibiotic oxytetracycline (OTC) using polyanion poly(2-acrylamide-2-methylpropane sulfonic acid), PAMPs modified α-Al2O3 nanoparticles (PAMNA) was investigated. Surface modification of α-Al2O3 nanoparticles by PAMPs enhanced the removal efficiency of OTC significantly from 35.5 to 90.7 %. The optimum conditions for adsorptive removal of OTC using PAMNA were found to be pH 4, contact time 120 min and adsorbent dosage 20 mg/mL. Under selected conditions, the removal efficiency of OTC using PAMNA was greater than 90 % while the maximum adsorption capacity reached 140.2 mg/g. After three regenerations, the removal efficiencies of OTC were still higher than 75 %. The results of adsorption isotherms of OTC on PAMNA and the surface charge change of PAMNA indicate that both electrostatic and non-electrostatic interactions control OTC adsorption on PAMNA.
Downloads
References
T.G. Ambaye, M. Vaccari M, E.D. van Hullebusch, A. Amrane, S. Rtimi S, International Journal of Environmental Science and Technology18 (2021) 3273–3294. https://doi.org/10.1007/s13762-020-03060-w.
T.D. Pham TD, T.T. Tran, V.A. Le, T.T. Pham, T.H. Dao, T.S. Le. Journal of Molecular Liquids 287 (2019) 110900. https://doi.org/10.1016/j.molliq.2019.110900.
N.H. Tran, H. Chen , T.V. Do, M. Reinhard, H.H. Ngo, Y.He, Talanta 159 (2016) 163-73. https://doi.org/10.1016/j.talanta.2016.06.006.
T.H.Y. Doan, T.H. Hoang, V.A. Le, D.N. Vu, T.N. Vu, A.L. Srivastav, T.D. Pham Environmental Research. 216 (2023) 114618. https://doi.org/10.1016/j.envres.2022.114618.
C. Wang, X. Pan, Y. Fan, Y. Chen, W. Mu Environmental Toxicology and Pharmacology 56 (2017) 35-42. https://doi.org/10.1016/j.etap.2017.08.019.
C. Zhao, H. Deng, Y. Li, Z. Liu Journal of Hazardous Materials 176 (2010) 884-92. https://doi.org/10.1016/j.jhazmat.2009.11.119.
T.H. Le, Ng C, N.H. Tran, H. Chen, H.Y-H. Gin Water Research 145 (2018) 498-508. https://doi.org/10.1016/j.watres.2018.08.060.
L. Liu, Wang M-x, M-m Liu, F. Liu, L. Weng, L.K. Koopal, F.T Wang, Journal of Hazardous Materials 226 (2012) 28-35. https://doi.org/10.1016/j.jhazmat.2012.04.060.
T.T.T Truong, T.N. Vu, T.D. Dinh, T.T. Pham, T.A.H. Nguyen, M.H. Nguyen, T.D. Nguyen, S. Yusa, T.D. Pham, Progress in Organic Coatings 158 (2021) 106361. https://doi.org/10.1016/j.porgcoat.2021.106361.
J. Zhao J, G. Liang, X. Zhang, X. Cai, R. Li, X. Xie, Science of The Total Environment. 688 (2019) 1205-15. https://doi.org/10.1016/j.scitotenv.2019.06.287.
T.H. Dao, T.Q.M Vu, N.T. Nguyen, T.T Pham, T.L. Nguyen, S. Yusa, T.D. Pham Langmuir 36(43) (2020) 13001-11. https://doi.org/10.1021/acs.langmuir.0c02352.
N.T Nguyen, T.H. Dao, T.T. Truong, T.M.T. Nguyen, T.D. Pham Journal of Molecular Liquids 309 (2020) 113150. https://doi.org/10.1016/j.molliq.2020.113150.
A.V. Delgado, F. C. González, R.J. Hunter, L.K. Koopal, J. Lyklema J. Journal of Colloid and Interface Science 309(2) (2007) 194-224 https://doi.org/10.1016/j.jcis.2006.12.075
M. Jia, F. Wang, Y. Bian, X. Jin, Y. Song, F.O. Kengara, R. Xu, X. Jiang Bioresource Technology. 136 (2013) 87-93. https://doi.org/10.1016/j.biortech.2013.02.098.
J.K. Wolterink, L.K. Koopal, M.A.C. Stuart, W. H. Van Riemsdijk. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 291 (2006) 13-23. http://dx.doi.org/10.1016/j.colsurfa.2006.04.053.
W-R Chen, C.H. Huang C-H. Chemosphere. 79(8) (2010) 779-85. http://dx.doi.org/10.1016/j.chemosphere.2010.03.020.
Downloads
Published
Issue
Section
How to Cite
Share
Funding data
-
Đại học Quốc gia Hà Nội
Grant numbers QG.22.75