Inhibition of rice-blast fungus Magnaporthe oryzae by Piper betle extracts: in vitro evidence and in silico prediction

Authors

  • Nguyen Thi Thanh Hai Department of Chemistry, University of Sciences, Hue University, Hue 530000, Vietnam Author
  • Thanh Q. Bui Department of Chemistry, University of Sciences, Hue University, Hue 530000, Vietnam Author
  • Tran Thi Ai My Department of Chemistry, University of Sciences, Hue University, Hue 530000, Vietnam Author
  • Nguyen Duc Vu Quyen Department of Chemistry, University of Sciences, Hue University, Hue 530000, Vietnam Author
  • Phan Tu Quy Department of Natural Sciences & Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam Author
  • Nguyen Tien Long Institute of Biotechnology, Hue University, Hue 530000, Vietnam Author
  • Nguyen Vinh Phu Faculty of Basic Sciences, University of Medicine and Pharmacy, Hue University, Hue 530000, Vietnam Author
  • Nguyen Thi Thu Thuy Faculty of Agronomy, University of Agriculture and Forestry, Hue University, Hue 530000, Vietnam Author
  • Nguyen Thi Ai Nhung Department of Chemistry, University of Sciences, Hue University, Hue 530000, Vietnam Author

DOI:

https://doi.org/10.51316/jca.2021.094

Keywords:

Piper betle extract, Magnaporthe oryzae enzyme 6JBR, bio-assays, docking technique

Abstract

Developing new antimicrobial agents towards Magnaporthe oryzae based on Piper betle extracts is practicable if an inhibition mechanism is known. The information for the retrieval was collected from experimental investigations and computational researches on the inhibitability of the plant extract compositions (P1 – P14) towards the fungus trehalose-6-phosphate synthase (PDB-6JBR). Gas chromatography-mass spectrometry characterisation determines 4-Chromanol (P5), 1’-Hydroxychavicol acetate (P6), Eugenol acetate (P7), and 4-Allyl-1,2-diacetoxybenzene (P8) making up the majority of Piper betle extract composition. Bio-assays provide experimental evidence of a total antifungal effect towards M. oryzae. Docking-based simulation confirms the significant static stability of P5-6JBR, P6-6JBR, P7-6JBR, and P8-6JBR. QSARIS analysis exceptionalises bio-compatibility of P5, P6, P7, and P8. The results prove the antifungal potentiality of Piper betle extracts and suggest trehalose-6-phosphate synthase as a promising target for M. oryzae inhibition.

Downloads

Download data is not yet available.

References

A. Budiman, D.L. Aulifa, Pharmacogn. J. 21 (2020) 473–477. https://doi.org/10.5530/pj.2020.12.73.

R.S. Patil, P.M. Harale, K.V. Shivangekar, P.P. Kumbhar, R.R. Desai, J. Chem. Pharm. Res 7 (2015) 1095–1101.

A. Longya, S. Talumphai, C. Jantasuriyarat, Pyricularia oryzae , from Thailand Using ISSR and SRAP Markers, J. Fungus 6 (1) (2020) 38-51.

https://doi.org/ 10.3390/jof6010038.

F. Fazal, P.P. Mane, M.P. Rai, K.R. Thilakchand, H.P. Bhat, P.S. Kamble, P.L. Palatty, M.S. Baliga, Chin. J. Integr. Med (2014) 1–11. https://doi.org/10.1007/s11655-013-1334-1

L.S. Arambewela, M.L.D.A. Arawwawala, D. Withanage, S. Kulathunga, J. Complement. Integr. Med, 7 (1) (2010) 48-61.

https://doi.org/10.2202/1553-3840.1391

P. Maisuthisakul, M. Suttajit, R. Pongsawatmanit, Food Chem 10 (2007) 1409–1418. https://doi.org/10.1016/j.foodchem.2005.11.032

N. Made, D. Mara, W. Nayaka, M. Malida, V. Sasadara, D.A. Sanjaya, P. Era, S. Kusuma, N. Luh, K. Arman, A. Dewi, E. Cahyaningsih, R. Hartati, Piper betle (L): Molecules 26 (8) (2021) 1–21. https://doi.org/10.3390/molecules26082321

G. Gouramanis, Pyricularia oryzae in Northern Greece 15 (3) (1997) 68.

J.R. Vyvyan, Tetrahedron 58 (2002) 1631–1646, 1464-5416.

M. Burhan, S. Talib, M. Ishfaq, S. Ahmad, J. Agric. Res 47 (4) (2009) 465-468.

G.B. Gregoria, D. Senadhira, R.D. Mendoza, Screening rice for salinity tolerance (1997).

V.S. Brauer, C.P. Rezende, A.M. Pessoni, R.G. De Paula, K.S. Rangappa, S.C. Nayaka, V.K. Gupta, F. Almeida, Biomolecules 9 (2019) 1–21.

https://doi.org/10.3390/biom9100521

R.M.A. Elamawi, R.A.S. El-Shafey, Egypt. J. Agric. Res 91 (4) (2013) 1271-1283. http://doi.org/10.21608/ejar.2013.165104

O. Tarasova, V. Poroikov, A. Veselovsky, Molecules 23 (2018) 11–13. http://doi.org/10.3390/molecules23051233.

T.M. Chandra Babu, S.S. Rajesh, B.V. Bhaskar, S. Devi, A. Rammohan, T. Sivaraman, W. Rajendra, RSC Adv 7 (2017) 18277–18292.

http://doi.org/10.1039/C6RA27872H.

T. Du Ngo, T.D. Tran, M.T. Le, K.M. Thai, Mol. Divers, 20 (2016) 945–961. https://doi.org/10.1007/s11030-016-9688-5

K.M. Thai, D.P. Le, N.V.K. Tran, T.T.H. Nguyen, T.D. Tran, M.T. Le, J. Theor. Biol 385 (2015) 31–39. https://doi.org/10.1016/j.jtbi.2015.08.019.

J. Gasteiger, M. Marsili, Tetrahedron 36 (1980) 3219–3228. https://doi.org/ 10.1016/0040-4020(80)80168-2.

C.A. Lipinski, F. Lombardo, B.W. Dominy, P.J. Feeney, Adv. Drug Deliv. Rev 23 (1997) 3–25. https://doi.org/10.1016/S0169-409X(96)00423-1

M.J. Ahsan, J.G. Samy, H. Khalilullah, M.S. Nomani, P. Saraswat, R. Gaur, A. Singh, Bioorganic Med. Chem. Lett, 21 (2011) 7246–7250. https://doi.org/10.1016/j.bmcl.2011.10.057

J. Mazumdera, R. Chakraborty, S. Sena, S. Vadrab, B. Dec, T.K. Ravi, Der Pharma Chem. 1 (2009) 188–198.

B.T.P. Thuy, T.T.A. My, N.T.T. Hai, H.T.P. Loan, L.T. Hieu, T.T. Hoa, T.Q. Bui, H.N. Tuong, N.T.T. Thuy, D.K. Dung, P. Van Tat, P.T. Quy, N.T.A. Nhung, Struct. Chem 32(1) (2020) 135-148. https://doi.org/10.1007/s11224-020-01627-4

T. Thi, P. Thao, T.Q. Bui, T. Quy, C. Bao, T. Van, RSC Adv 11 (2021) 11959–11975. https://doi.org/10.1039/d1ra00441g

T.Q. Bui, H.T.P. Loan, T.T.A. My, D.T. Quang, B.T.P. Thuy, V.D. Nhan, P.T. Quy, P. Van Tat, D.Q. Dao, N.T. Trung, L.K. Huynh, N.T.A. Nhung, RSC Adv 10 (2020) 30961–30974. https://doi.org/ 10.1039/D0RA05159D

Y. Ding, Y. Fang, J. Moreno, J. Ramanujam, M. Jarrell, M. Brylinski, Comput. Biol. Chem. 64 (2016) 403–413. https://doi.org/10.1016/j.compbiolchem.2016.08.007

R. Feynman, The Feynman lectures on physics - Volume II, Millenium, Basic Books, New York (2010).

Published

30-01-2022

Issue

Section

Full Articles

How to Cite

Inhibition of rice-blast fungus Magnaporthe oryzae by Piper betle extracts: in vitro evidence and in silico prediction. (2022). Vietnam Journal of Catalysis and Adsorption, 10(1S), 74-80. https://doi.org/10.51316/jca.2021.094

Share

Funding data

Most read articles by the same author(s)

Similar Articles

1-10 of 61

You may also start an advanced similarity search for this article.