Inhibition of rice-blast fungus Magnaporthe oryzae by Piper betle extracts: in vitro evidence and in silico prediction
DOI:
https://doi.org/10.51316/jca.2021.094Keywords:
Piper betle extract, Magnaporthe oryzae enzyme 6JBR, bio-assays, docking techniqueAbstract
Developing new antimicrobial agents towards Magnaporthe oryzae based on Piper betle extracts is practicable if an inhibition mechanism is known. The information for the retrieval was collected from experimental investigations and computational researches on the inhibitability of the plant extract compositions (P1 – P14) towards the fungus trehalose-6-phosphate synthase (PDB-6JBR). Gas chromatography-mass spectrometry characterisation determines 4-Chromanol (P5), 1’-Hydroxychavicol acetate (P6), Eugenol acetate (P7), and 4-Allyl-1,2-diacetoxybenzene (P8) making up the majority of Piper betle extract composition. Bio-assays provide experimental evidence of a total antifungal effect towards M. oryzae. Docking-based simulation confirms the significant static stability of P5-6JBR, P6-6JBR, P7-6JBR, and P8-6JBR. QSARIS analysis exceptionalises bio-compatibility of P5, P6, P7, and P8. The results prove the antifungal potentiality of Piper betle extracts and suggest trehalose-6-phosphate synthase as a promising target for M. oryzae inhibition.
Downloads
References
A. Budiman, D.L. Aulifa, Pharmacogn. J. 21 (2020) 473–477. https://doi.org/10.5530/pj.2020.12.73.
R.S. Patil, P.M. Harale, K.V. Shivangekar, P.P. Kumbhar, R.R. Desai, J. Chem. Pharm. Res 7 (2015) 1095–1101.
A. Longya, S. Talumphai, C. Jantasuriyarat, Pyricularia oryzae , from Thailand Using ISSR and SRAP Markers, J. Fungus 6 (1) (2020) 38-51.
https://doi.org/ 10.3390/jof6010038.
F. Fazal, P.P. Mane, M.P. Rai, K.R. Thilakchand, H.P. Bhat, P.S. Kamble, P.L. Palatty, M.S. Baliga, Chin. J. Integr. Med (2014) 1–11. https://doi.org/10.1007/s11655-013-1334-1
L.S. Arambewela, M.L.D.A. Arawwawala, D. Withanage, S. Kulathunga, J. Complement. Integr. Med, 7 (1) (2010) 48-61.
https://doi.org/10.2202/1553-3840.1391
P. Maisuthisakul, M. Suttajit, R. Pongsawatmanit, Food Chem 10 (2007) 1409–1418. https://doi.org/10.1016/j.foodchem.2005.11.032
N. Made, D. Mara, W. Nayaka, M. Malida, V. Sasadara, D.A. Sanjaya, P. Era, S. Kusuma, N. Luh, K. Arman, A. Dewi, E. Cahyaningsih, R. Hartati, Piper betle (L): Molecules 26 (8) (2021) 1–21. https://doi.org/10.3390/molecules26082321
G. Gouramanis, Pyricularia oryzae in Northern Greece 15 (3) (1997) 68.
J.R. Vyvyan, Tetrahedron 58 (2002) 1631–1646, 1464-5416.
M. Burhan, S. Talib, M. Ishfaq, S. Ahmad, J. Agric. Res 47 (4) (2009) 465-468.
G.B. Gregoria, D. Senadhira, R.D. Mendoza, Screening rice for salinity tolerance (1997).
V.S. Brauer, C.P. Rezende, A.M. Pessoni, R.G. De Paula, K.S. Rangappa, S.C. Nayaka, V.K. Gupta, F. Almeida, Biomolecules 9 (2019) 1–21.
https://doi.org/10.3390/biom9100521
R.M.A. Elamawi, R.A.S. El-Shafey, Egypt. J. Agric. Res 91 (4) (2013) 1271-1283. http://doi.org/10.21608/ejar.2013.165104
O. Tarasova, V. Poroikov, A. Veselovsky, Molecules 23 (2018) 11–13. http://doi.org/10.3390/molecules23051233.
T.M. Chandra Babu, S.S. Rajesh, B.V. Bhaskar, S. Devi, A. Rammohan, T. Sivaraman, W. Rajendra, RSC Adv 7 (2017) 18277–18292.
http://doi.org/10.1039/C6RA27872H.
T. Du Ngo, T.D. Tran, M.T. Le, K.M. Thai, Mol. Divers, 20 (2016) 945–961. https://doi.org/10.1007/s11030-016-9688-5
K.M. Thai, D.P. Le, N.V.K. Tran, T.T.H. Nguyen, T.D. Tran, M.T. Le, J. Theor. Biol 385 (2015) 31–39. https://doi.org/10.1016/j.jtbi.2015.08.019.
J. Gasteiger, M. Marsili, Tetrahedron 36 (1980) 3219–3228. https://doi.org/ 10.1016/0040-4020(80)80168-2.
C.A. Lipinski, F. Lombardo, B.W. Dominy, P.J. Feeney, Adv. Drug Deliv. Rev 23 (1997) 3–25. https://doi.org/10.1016/S0169-409X(96)00423-1
M.J. Ahsan, J.G. Samy, H. Khalilullah, M.S. Nomani, P. Saraswat, R. Gaur, A. Singh, Bioorganic Med. Chem. Lett, 21 (2011) 7246–7250. https://doi.org/10.1016/j.bmcl.2011.10.057
J. Mazumdera, R. Chakraborty, S. Sena, S. Vadrab, B. Dec, T.K. Ravi, Der Pharma Chem. 1 (2009) 188–198.
B.T.P. Thuy, T.T.A. My, N.T.T. Hai, H.T.P. Loan, L.T. Hieu, T.T. Hoa, T.Q. Bui, H.N. Tuong, N.T.T. Thuy, D.K. Dung, P. Van Tat, P.T. Quy, N.T.A. Nhung, Struct. Chem 32(1) (2020) 135-148. https://doi.org/10.1007/s11224-020-01627-4
T. Thi, P. Thao, T.Q. Bui, T. Quy, C. Bao, T. Van, RSC Adv 11 (2021) 11959–11975. https://doi.org/10.1039/d1ra00441g
T.Q. Bui, H.T.P. Loan, T.T.A. My, D.T. Quang, B.T.P. Thuy, V.D. Nhan, P.T. Quy, P. Van Tat, D.Q. Dao, N.T. Trung, L.K. Huynh, N.T.A. Nhung, RSC Adv 10 (2020) 30961–30974. https://doi.org/ 10.1039/D0RA05159D
Y. Ding, Y. Fang, J. Moreno, J. Ramanujam, M. Jarrell, M. Brylinski, Comput. Biol. Chem. 64 (2016) 403–413. https://doi.org/10.1016/j.compbiolchem.2016.08.007
R. Feynman, The Feynman lectures on physics - Volume II, Millenium, Basic Books, New York (2010).
Downloads
Published
Issue
Section
How to Cite
Share
Funding data
-
Bộ Giáo dục và Ðào tạo
Grant numbers B2021-DHH-13