Synthesis of AgNPs/MnO2/rGO composite materials with adsorption properties and their application in analysis of anti-inflammatory and antibiotic agents
DOI:
https://doi.org/10.62239/jca.2023.065Keywords:
AgNPs, MnO2, graphen oxit , Piroxicam, OfloxacinAbstract
In this article, AgNPs and MnO2 were successively synthesized on the Graphene oxide (GO) substrate using an in situ method. The AgNPs/MnO2/GO nanocomposite material was modified onto the surface of a glassy carbon electrode (GCE) and the material was electrochemically reduced on the electrode surface. The material obtained after reduction was called AgNPs/MnO2/rGO, which was confirmed by X-Ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) to examine the chemical bonding and by scanning electron microscopy (SEM) combined with energy-dispersive spectroscopy (EDS) to demonstrate the elemental characteristics of the material. In addition, X-ray photoelectron spectroscopy (XPS) analysis was performed to determine the elemental composition, chemical state, and electronic state of the elements on the surface of the material. The application of the reduced material was for the analysis of Piroxicam and Ofloxacin using the differential pulse anodic stripping voltammetry (DP-ASV) method. The investigation of pH and scan rate (v) indicated that the synthesized material had adsorption properties and was applied for the analysis of the anti-inflammatory drug Piroxicam and the antibiotic Ofloxacin.
Downloads
References
Dhanalakshmi N., Priya T., Thennarasu S., Sivanesan S., Thinakaran N., Journal of Pharmaceutical Analysis 11(1) (2021) 48–56. https://doi.org/10.1016/j.jpha.2020.02.001
Pham T.D.M., Ziora Z.M., Blaskovich M.A.T., Medicinal Chemistry Communications 10(10) (2019) 1719–1739. https://doi.org/10.1039/C9MD00120D
Hurtado-Sánchez M.D.C., Lozano V.A., Rodríguez-Cáceres M.I., Durán-Merás I., Escandar G.M., Talanta 134 (2015) 215–223. http://dx.doi.org/10.1016/j.talanta.2014.11.022
Gadipelli S., Guo Z.X., Progress in Materials Science 69 (2015) 1–60. http://dx.doi.org/10.1016/j.pmatsci.2014.10.004
Wang J., Chen B., Chemical Engineering Journal 281 (2015) 379–388. http://dx.doi.org/10.1016/j.cej.2015.06.102
Verma M., Tyagi I., Kumar V., Goel S., Vaya D., Kim H., Journal of Environmental Chemical Engineering 9(5) (2021) 106045. https://doi.org/10.1016/j.jece.2021.106045
Rohaizad A., Mohd Hir Z.A., Kamal U.A.A.M., Aspanut Z., Pam A.A., Results in Chemistry 5(January 2023) (2023) 100731. https://doi.org/10.1016/j.rechem.2022.100731
Sakthinathan S., Chen S.M., International Journal of Electrochemical Science 10(8) (2015) 6527-6536.
https://doi.org/10.1016/S1452-3981(23)06739-1
Hummers W.S., Offeman R.E., Journal of the American Chemical Society 80(6) (1958) 1339. https://doi.org/10.1021/ja01539a017
Marcano D.C., Kosynkin D.V., Berlin J.M., Sinitskii A., Sun Z., Slesarev A., et al., American Chemical Society Nano 4(8) (2010) 4806–4814. https://doi.org/10.1021/nn1006368
Hemmati S., Zamenian T., Delsooz N., Zangeneh A., Mahdi Zangeneh M., Applied Organometallic Chemistry 34(2) (2020) 1–12. https://doi.org/10.1002/aoc.5274
Li J., Shen H., Yu S., Zhang G., Ren C., Hu X., et al., Analyst 145(9) (2020) 3283–3288. https://doi.org/10.1039/D0AN00348D
Shi X., Zheng H., Kannan A.M., Pérez-Salcedo K., Escobar B., Inorganic Chemistry 58(8) (2019) 5335–5344. https://doi.org/10.1021/acs.inorgchem.9b00492
Chen F., Huang Y., Guo L., Ding M., Yang H.Y., Nanoscale 9(28) (2017) 10101–10108. https://doi.org/10.1039/C7NR01861D
Balaraman P., Balasubramanian B., Kaliannan D., Durai M., Kamyab H., Park S, et al., Waste and Biomass Valorization. 11(10) (2020) 5255–5271. https://doi.org/10.1007/s12649-020-01083-5
Zhang J., Xu Y., Liu Z., Yang W., Liu J., RSC Advances 5(67) (2015) 54275–54282. http://dx.doi.org/10.1039/C5RA07857A
Hu J., Shen Y., Xu L., Liu Y., Chemical Physics Letters 739 (2020) 136953. https://doi.org/10.1016/j.cplett.2019.136953
Wang M., Chen K., Liu J., He Q., Li G., Li F., Catalysts 8(4) (2018) 138. https://doi.org/10.3390/catal8040138
Hastuti E., Subhan A., Amonpattaratkit P., Zainuri M., Suasmoro S., RSC Advances 11(14) (2021) 7808–78023. https://doi.org/10.1039/D0RA10376D
Aldosari M.A., Alsaud K.B.B., Othman A., Al-Hindawi M., Faisal N.H., Ahmed R., et al., Polymers 12(5) (2020) 1155. https://doi.org/10.3390/polym12051155
Joseph Wang, Study of electrode reactions and interfacial properties In: Analytical electrochemistry, Third Edition, John Wiley & Sons Inc. (2006).
Allen J. Bard , Electrochemical Methods: Fundamentals and Applications, 2nd Edition Annual Review of Materials Science, John Wiley & Sons Inc. 2 (2000).
Soleymani J., Hasanzadeh M., Shadjou N., Khoubnasab Jafari M., Gharamaleki J.V., Yadollahi M., et al., Materials Science and Engineering:C 61 (2016) 638–650. http://dx.doi.org/10.1016/j.msec.2016.01.003
Zhang J.W., Li R.F., Yao L., Wang Z.X., Weng X. Lv., Kong F.Y., et al., Journal of Electroanalytical Chemistry 823 (2018) 1–8. https://doi.org/10.1016/j.jelechem.2018.04.061
Asadpour-Zeynali K., Majidi M.R., Zarifi M., Central European Journal of Chemistry 8(1) (2010) 155–162. https://doi.org/10.2478/s11532-009-0122-z
Feizollahi A., Rafati A.A., Assari P., Asadpour Joghani R., Journal of The Electrochemical Society 167(6) (2020) 067521. https://doi.org/10.1149/1945-7111/ab82f9
Babaei A., Moradi M., Sohrabi M., Feshki S., Marandi M., Journal of Nanostructures 8(2) (2018) 119–130. https://doi.org/10.22052/JNS.2018.02.002
Wu F., Xu F., Chen L., Jiang B., Sun W., Wei X., Chemical Research in Chinese Universities 32(3) (2016) 468–473. https://doi.org/10.1007/s40242-016-5367-4
Ambrosi A., Antiochia R., Campanella L., Dragone R., Lavagnini I., Journal of Hazardous Materials 122(3) (2005) 219–225. https://doi.org/10.1016/j.jhazmat.2005.03.011
Jiang Z., Liu Q., Tang Y., Zhang M., Electroanalysis 29(2) (2017) 602–608. https://doi.org/10.1002/elan.201600408
Varodi C., Coros M., Pogăcean F., Ciorîţă A., Turza A., Pruneanu S., Chemosensors 10(2) (2022) 47. https://doi.org/10.3390/chemosensors10020047
Downloads
Published
Issue
Section
How to Cite
Share
Funding data
-
National Foundation for Science and Technology Development
Grant numbers 104.04-2020.54