Synthesis of AgNPs/MnO2/rGO composite materials with adsorption properties and their application in analysis of anti-inflammatory and antibiotic agents

Authors

  • Ho Xuan Anh Vu Faculty of Chemistry, University of Sciences, Hue University Author
  • Le Trung Hieu Faculty of Chemistry, University of Sciences, Hue University Author
  • Nguyen Hai Phong Faculty of Chemistry, University of Sciences, Hue University Author

DOI:

https://doi.org/10.62239/jca.2023.065

Keywords:

AgNPs, MnO2, graphen oxit , Piroxicam, Ofloxacin

Abstract

In this article, AgNPs and MnO2 were successively synthesized on the Graphene oxide (GO) substrate using an in situ method. The AgNPs/MnO2/GO nanocomposite material was modified onto the surface of a glassy carbon electrode (GCE) and the material was electrochemically reduced on the electrode surface. The material obtained after reduction was called AgNPs/MnO2/rGO, which was confirmed by X-Ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) to examine the chemical bonding and by scanning electron microscopy (SEM) combined with energy-dispersive spectroscopy (EDS) to demonstrate the elemental characteristics of the material. In addition, X-ray photoelectron spectroscopy (XPS) analysis was performed to determine the elemental composition, chemical state, and electronic state of the elements on the surface of the material. The application of the reduced material was for the analysis of Piroxicam and Ofloxacin using the differential pulse anodic stripping voltammetry (DP-ASV) method. The investigation of pH and scan rate (v) indicated that the synthesized material had adsorption properties and was applied for the analysis of the anti-inflammatory drug Piroxicam and the antibiotic Ofloxacin.

Downloads

Download data is not yet available.

References

Dhanalakshmi N., Priya T., Thennarasu S., Sivanesan S., Thinakaran N., Journal of Pharmaceutical Analysis 11(1) (2021) 48–56. https://doi.org/10.1016/j.jpha.2020.02.001

Pham T.D.M., Ziora Z.M., Blaskovich M.A.T., Medicinal Chemistry Communications 10(10) (2019) 1719–1739. https://doi.org/10.1039/C9MD00120D

Hurtado-Sánchez M.D.C., Lozano V.A., Rodríguez-Cáceres M.I., Durán-Merás I., Escandar G.M., Talanta 134 (2015) 215–223. http://dx.doi.org/10.1016/j.talanta.2014.11.022

Gadipelli S., Guo Z.X., Progress in Materials Science 69 (2015) 1–60. http://dx.doi.org/10.1016/j.pmatsci.2014.10.004

Wang J., Chen B., Chemical Engineering Journal 281 (2015) 379–388. http://dx.doi.org/10.1016/j.cej.2015.06.102

Verma M., Tyagi I., Kumar V., Goel S., Vaya D., Kim H., Journal of Environmental Chemical Engineering 9(5) (2021) 106045. https://doi.org/10.1016/j.jece.2021.106045

Rohaizad A., Mohd Hir Z.A., Kamal U.A.A.M., Aspanut Z., Pam A.A., Results in Chemistry 5(January 2023) (2023) 100731. https://doi.org/10.1016/j.rechem.2022.100731

Sakthinathan S., Chen S.M., International Journal of Electrochemical Science 10(8) (2015) 6527-6536.

https://doi.org/10.1016/S1452-3981(23)06739-1

Hummers W.S., Offeman R.E., Journal of the American Chemical Society 80(6) (1958) 1339. https://doi.org/10.1021/ja01539a017

Marcano D.C., Kosynkin D.V., Berlin J.M., Sinitskii A., Sun Z., Slesarev A., et al., American Chemical Society Nano 4(8) (2010) 4806–4814. https://doi.org/10.1021/nn1006368

Hemmati S., Zamenian T., Delsooz N., Zangeneh A., Mahdi Zangeneh M., Applied Organometallic Chemistry 34(2) (2020) 1–12. https://doi.org/10.1002/aoc.5274

Li J., Shen H., Yu S., Zhang G., Ren C., Hu X., et al., Analyst 145(9) (2020) 3283–3288. https://doi.org/10.1039/D0AN00348D

Shi X., Zheng H., Kannan A.M., Pérez-Salcedo K., Escobar B., Inorganic Chemistry 58(8) (2019) 5335–5344. https://doi.org/10.1021/acs.inorgchem.9b00492

Chen F., Huang Y., Guo L., Ding M., Yang H.Y., Nanoscale 9(28) (2017) 10101–10108. https://doi.org/10.1039/C7NR01861D

Balaraman P., Balasubramanian B., Kaliannan D., Durai M., Kamyab H., Park S, et al., Waste and Biomass Valorization. 11(10) (2020) 5255–5271. https://doi.org/10.1007/s12649-020-01083-5

Zhang J., Xu Y., Liu Z., Yang W., Liu J., RSC Advances 5(67) (2015) 54275–54282. http://dx.doi.org/10.1039/C5RA07857A

Hu J., Shen Y., Xu L., Liu Y., Chemical Physics Letters 739 (2020) 136953. https://doi.org/10.1016/j.cplett.2019.136953

Wang M., Chen K., Liu J., He Q., Li G., Li F., Catalysts 8(4) (2018) 138. https://doi.org/10.3390/catal8040138

Hastuti E., Subhan A., Amonpattaratkit P., Zainuri M., Suasmoro S., RSC Advances 11(14) (2021) 7808–78023. https://doi.org/10.1039/D0RA10376D

Aldosari M.A., Alsaud K.B.B., Othman A., Al-Hindawi M., Faisal N.H., Ahmed R., et al., Polymers 12(5) (2020) 1155. https://doi.org/10.3390/polym12051155

Joseph Wang, Study of electrode reactions and interfacial properties In: Analytical electrochemistry, Third Edition, John Wiley & Sons Inc. (2006).

Allen J. Bard , Electrochemical Methods: Fundamentals and Applications, 2nd Edition Annual Review of Materials Science, John Wiley & Sons Inc. 2 (2000).

Soleymani J., Hasanzadeh M., Shadjou N., Khoubnasab Jafari M., Gharamaleki J.V., Yadollahi M., et al., Materials Science and Engineering:C 61 (2016) 638–650. http://dx.doi.org/10.1016/j.msec.2016.01.003

Zhang J.W., Li R.F., Yao L., Wang Z.X., Weng X. Lv., Kong F.Y., et al., Journal of Electroanalytical Chemistry 823 (2018) 1–8. https://doi.org/10.1016/j.jelechem.2018.04.061

Asadpour-Zeynali K., Majidi M.R., Zarifi M., Central European Journal of Chemistry 8(1) (2010) 155–162. https://doi.org/10.2478/s11532-009-0122-z

Feizollahi A., Rafati A.A., Assari P., Asadpour Joghani R., Journal of The Electrochemical Society 167(6) (2020) 067521. https://doi.org/10.1149/1945-7111/ab82f9

Babaei A., Moradi M., Sohrabi M., Feshki S., Marandi M., Journal of Nanostructures 8(2) (2018) 119–130. https://doi.org/10.22052/JNS.2018.02.002

Wu F., Xu F., Chen L., Jiang B., Sun W., Wei X., Chemical Research in Chinese Universities 32(3) (2016) 468–473. https://doi.org/10.1007/s40242-016-5367-4

Ambrosi A., Antiochia R., Campanella L., Dragone R., Lavagnini I., Journal of Hazardous Materials 122(3) (2005) 219–225. https://doi.org/10.1016/j.jhazmat.2005.03.011

Jiang Z., Liu Q., Tang Y., Zhang M., Electroanalysis 29(2) (2017) 602–608. https://doi.org/10.1002/elan.201600408

Varodi C., Coros M., Pogăcean F., Ciorîţă A., Turza A., Pruneanu S., Chemosensors 10(2) (2022) 47. https://doi.org/10.3390/chemosensors10020047

Published

09-03-2024

Issue

Section

Full Articles

How to Cite

Synthesis of AgNPs/MnO2/rGO composite materials with adsorption properties and their application in analysis of anti-inflammatory and antibiotic agents. (2024). Vietnam Journal of Catalysis and Adsorption, 12(4), 48-55. https://doi.org/10.62239/jca.2023.065

Share

Funding data

Most read articles by the same author(s)

Similar Articles

1-10 of 40

You may also start an advanced similarity search for this article.