Fischer-Tropsch synthesis over Co/g-Al2O3 catalyst loaded on ceramic monolith-structured substrate
DOI:
https://doi.org/10.51316/jca.2020.055Keywords:
Fischer-Tropsch, Monolith structured catalyst, Cobalt-based catalyst, Wash-coating slurry methodAbstract
Cobalt-based catalyst supported on g-Al2O3 was prepared by impregnation method and loaded on ceramic monolith-structured substrate by wash-coating slurry method. Physico-chemical properties of the catalysts were characterized by X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) specific surface area and H2 temperatured-programmed reduction (H2-TPR). Activity of the catalysts for Fischer-Tropsch synthesis was investigated in a tubular reactor in a temperature range of 200-275 oC at 20 bar and GHSV = 3000 h-1. Co/g-Al2O3 catalyst loaded on ceramic monolith-structured substrate enhanced efficacy of Fischer-Tropsch synthesis by increasing and stabilizing CO conversion and C5+ selectivity, compared to Co/g-Al2O3 powder catalyst.
Downloads
References
C. Song, W. Pan, Catalysis Today 98 (2004) 463. https://doi.org/10.1016/j.cattod.2004.09.054
L.C. Loc, P.H. Phuong, N. Tri, Role of CeO2 promoter in NiO/α-Al2O3 catalyst for dry reforming of methane, AIP Conference Proceedings. AIP Publishing LLC, 2017, p. 020033.
L.C. Loc, P.H. Phuong, D. Putthea, N. Tri, N.T.T. Van, H.T. Cuong, International Journal of Nanotechnology 15 (2018) 968. https://doi.org/10.1504/IJNT.2018.099935
F. Fischer, H. Tropsch, Brennst. Chem 4 (1923) 276.
E. Iglesia, S.L. Soled, R.A. Fiato, Journal of Catalysis 137 (1992) 212. https://doi.org/10.1016/0021-9517(92)90150-G
E. Iglesia, S.L. Soled, R.A. Fiato, G.H. Via, Journal of Catalysis 143 (1993) 345. https://doi.org/10.1006/jcat.1993.1281
A. Hilmen, D. Schanke, A. Holmen, Catalysis letters 38 (1996) 143. https://doi.org/10.1007/BF00806560
T.K. Das, G. Jacobs, P.M. Patterson, W.A. Conner, J. Li, B.H. Davis, Fuel 82 (2003) 805. https://doi.org/10.1016/S0016-2361(02)00361-7
M. Luo, R. O'Brien, B.H. Davis, Catalysis Letters 98 (2004) 17. https://doi.org/10.1007/s10562-004-6442-x
N. Osakoo, R. Henkel, S. Loiha, F. Roessner, J. Wittayakun, Applied Catalysis A: General 464 (2013) 269. https://doi.org/10.1016/j.apcata.2013.06.008
S. Vada, A. Hoff, E. Ådnanes, D. Schanke, A. Holmen, Topics in Catalysis 2 (1995) 155. https://doi.org/10.1007/bf01491963
H. Zhang, W. Chu, C. Zou, Z. Huang, Z. Ye, L. Zhu, Catalysis letters 141 (2011) 438. https://doi.org/10.1007/s10562-010-0536-4
V.R.R. Pendyala, W.D. Shafer, G. Jacobs, B.H. Davis, Catalysis letters 144 (2014) 1088. https://doi.org/10.1007/s10562-014-1247-z
J. Patzlaff, Y. Liu, C. Graffmann, J. Gaube, Applied Catalysis A: General 186 (1999) 109. https://doi.org/10.1016/S0926-860X(99)00167-2
C.J. Bertole, C.A. Mims, G. Kiss, Journal of Catalysis 210 (2002) 84. https://doi.org/10.1006/jcat.2002.3666
D.J. Moodley, A.M. Saib, J. van de Loosdrecht, C.A. Welker-Nieuwoudt, B.H. Sigwebela, J. Niemantsverdriet, Catalysis Today 171 (2011) 192. https://doi.org/10.1016/j.cattod.2011.03.078
C.N. Satterfield, R.T. Hanlon, S.E. Tung, Z.M. Zou, G.C. Papaefthymiou, Industrial & engineering chemistry product research and development 25 (1986) 407. https://doi.org/10.1021/i300023a007
S. Li, A. Li, S. Krishnamoorthy, E. Iglesia, Catalysis Letters 77 (2001) 197. https://doi.org/10.1023/A:1013284217689
E. de Smit, B.M. Weckhuysen, Chemical Society Reviews 37 (2008) 2758. https://doi.org/10.1039/B805427D
H. Suo, S. Wang, C. Zhang, J. Xu, B. Wu, Y. Yang, H. Xiang, Y.-W. Li, Journal of catalysis 286 (2012) 111. https://doi.org/10.1016/j.jcat.2011.10.024
F. Rohr, O. Lindvåg, A. Holmen, E.A. Blekkan, Catalysis Today 58 (2000) 247. https://doi.org/10.1016/S0920-5861(00)00258-3
Ø. Borg, S. Eri, E.A. Blekkan, S. Storsæter, H. Wigum, E. Rytter, A. Holmen, Journal of Catalysis 248 (2007) 89. https://doi.org/10.1016/j.jcat.2007.03.008
A.n. Martı́nez, C. López, F. Márquez, I. Dı́az, Journal of Catalysis 220 (2003) 486. https://doi.org/10.1016/S0021-9517(03)00289-6
H. Xiong, Y. Zhang, K. Liew, J. Li, Journal of Molecular Catalysis A: Chemical 295 (2008) 68. https://doi.org/10.1016/j.molcata.2008.08.017
L.C. Loc, L.K. Trieu, H.S. Thoang, H.T.M. Trang, N.M. Huan, B.T. Huong, International journal of nanotechnology 10 (2013) 313. https://doi.org/10.1504/IJNT.2013.053145
A. Alvarez, J. Bengoa, M. Cagnoli, N. Gallegos, A. Yeramian, S. Marchetti, Studies in Surface Science and Catalysis, Elsevier, 2002, p. 1339.
A.A.G. Blanco, M.G. Amaya, M.E.R. Jalil, M. Nazzarro, M.I. Oliva, K. Sapag, Topics in Catalysis 54 (2011) 190. https://doi.org/10.1007/s11244-011-9638-5
A.Y. Khodakov, A. Griboval-Constant, R. Bechara, V.L. Zholobenko, Journal of Catalysis 206 (2002) 230. https://doi.org/10.1006/jcat.2001.3496
E. Iglesia, S.C. Reyes, R.J. Madon, S.L. Soled, Advances in catalysis, Elsevier, 1993, p. 221.
L. Almeida, F.J. Echave, O. Sanz, M. Centeno, G. Arzamendi, L. Gandia, E. Sousa-Aguiar, J.A. Odriozola, M. Montes, Chemical Engineering Journal 167 (2011) 536. https://doi.org/10.1016/j.cej.2010.09.091
P.H. Phuong, L.C. Loc, H.T. Cuong, N. Tri, Materials Transactions 59 (2018) 1898. https://doi.org/10.2320/matertrans.M2018211
A. Egaña, O. Sanz, D. Merino, X. Moriones, M. Montes, Industrial & Engineering Chemistry Research 57 (2018) 10187. https://doi.org/10.1021/acs.iecr.8b01492
P.N.U. Do, C.L. Luu, P.A. Nguyen, T.T. Van Nguyen, T.C. Hoang, T. Nguyen, Advances in Natural Sciences: Nanoscience and Nanotechnology 10 (2019) 035004. https://doi.org/10.1088/2043-6254/ab2ec7
L. Loc, N. Anh, P. Anh, N. Dung, N. Giang, P. Dai, N. Van, N. Tri, Vietnam J Chem 55 (2017) 351.
B. Sexton, A. Hughes, T. Turney, Journal of catalysis 97 (1986) 390. https://doi.org/10.1016/0021-9517(86)90011-4