Sacrificial template accelerated hydrolysis synthesis of high surface area stainless steel wire mesh-supported zinc-based mixed oxides: ZnCo2O4, Zn2MnO4 and Zn0.3Ni0.7O4
Abstract
The present work reports for the first time the room-temperature synthesis of stainless steel wire-mesh (SSWM) supported spinel metal oxides of high technological interest (ZnCo2O4, Zn2MnO4 and Zn0.3Ni0.7O4) with crystal sizes in the range of 4-8 nm, by applying the sacrificial template-accelerated hydrolysis (STAH) technique. The specific surface area of the spinel metal oxides obtained is at least one order of magnitude higher than that of spinel metal oxides previously obtained by the other technique. The key to achieving this outstanding result was the use of a template (SSWM-supported ZnO nanosheets) with a large proportion of polar surfaces and a high specific surface area (80 m2g-1). The nanosized spinel metal oxides are obtained in high yields (18-26 wt.%), adhere well to the SSWM support and exhibit a high specific surface area (87-178 m2g-1).
Downloads
References
H. Pang, Y. Ma, G. Li, J. Chen, J. Zhang, H. Zheng, W. Du, Dalton Transactions 41 (2012) 13284-13291.
K. Karthikeyan, D. Kalpana, N.G. Renganathan, Ionics 15 (2009) 107-110.
M. Davis, C. Gumeci, B. Black, C. Korzeniewski, L. Hope-Weeks, RSC Advances 2 (2012) 2061-2066.
A. Hameed, T. Montini, V. Gombac, P. Fornasiero, Photochemical & Photobiological Sciences 8 (2009) 677-682.
M. Imran, D.H. Kim, W.A. Al-Masry, A. Mahmood, A. Hassan, S. Haider, S.M. Ramay, Polymer Degradation and Stability 98 (2013) 904-915.
A. Leech C, E. Campbell L, Catalysts for the Control of Automotive Pollutants, AMERICAN CHEMICAL SOCIETY, 1975, pp. 161-177.
G.V. Bazuev, O.I. Gyrdasova, I.G. Grigorov, O.V. Koryakova, Inorg Mater 41 (2005) 288-292.
B. Chi, J. Li, X. Yang, H. Lin, N. Wang, Electrochimica Acta 50 (2005) 2059-2064.
S.V. Bangale, S.M. Khetre, D.R. Patil, S.R. Bamane, Sensors & transducers 134 (2011) 95-106.
S. Vijayanand, P.A. Joy, H.S. Potdar, D. Patil, P. Patil, Sensors and Actuators B: Chemical 152 (2011) 121-129.
Y. Qiu, S. Yang, H. Deng, L. Jin, W. Li, Journal of Materials Chemistry 20 (2010) 4439-4444.
W. Luo, X. Hu, Y. Sun, Y. Huang, Journal of Materials Chemistry 22 (2012) 8916-8921.
L. Hu, B. Qu, C. Li, Y. Chen, L. Mei, D. Lei, L. Chen, Q. Li, T. Wang, Journal of Materials Chemistry A 1 (2013) 5596-5602.
N. Du, Y. Xu, H. Zhang, J. Yu, C. Zhai, D. Yang, Inorganic Chemistry 50 (2011) 3320-3324.
C. Lee, S.-D. Seo, D. Kim, S. Park, K. Jin, D.-W. Kim, K. Hong, Nano Res. (2013) 1-8.
H. Liu, J. Wang, Electrochimica Acta 92 (2013) 371-375.
B. Liu, J. Zhang, X. Wang, G. Chen, D. Chen, C. Zhou, G. Shen, Nano Lett 12 (2012) 3005-3011.
Y. Sharma, N. Sharma, G.V. Subba Rao, B.V.R. Chowdari, Advanced Functional Materials 17 (2007) 2855-2861.
C. Ai, M. Yin, C. Wang, J. Sun, Journal of Materials Science 39 (2004) 1077-1079.
Menaka, S.L. Samal, K.V. Ramanujachary, S.E. Lofland, Govind, A.K. Ganguli, Journal of Materials Chemistry 21 (2011) 8566-8573.
H. Ohta, M. Hirano, K. Nakahara, H. Maruta, T. Tanabe, M. Kamiya, T. Kamiya, H. Hosono, Applied Physics Letters 83 (2003) 1029-1031.
P. Peshev, A. Toshev, G. Gyurov, Materials Research Bulletin 24 (1989) 33-40.
L.N. Sun, Q. Wang, C.W. Hu, Advanced Materials Research 531 (2012) 120-123.
X. Wei, D. Chen, W. Tang, Materials Chemistry and Physics 103 (2007) 54-58.
F. Song, L. Huang, D. Chen, W. Tang, Materials Letters 62 (2008) 543-547.
A. Aslani, M.R. Arefi, A. Babapoor, A. Amiri, K. Beyki-Shuraki, Applied Surface Science 257 (2011) 4885-4889.
X.X. Lin, Y.F. Zhu, W.Z. Shen, The Journal of Physical Chemistry C 113 (2009) 1812-1817.
B. Wang, H.M. Zhong, Z.F. Li, L. Wei, Journal of Applied Physics 97 (2005) 086105-086105-086103.
T.T. Vu, L. del Río, T. Valdés-Solís, G. Marbán, Fabrication of wire mesh-supported ZnO photocatalysts protected against photocorrosion, Applied Catalysis B: Environmental, 2013, pp. 189-198.
Liu, J. Jiang, M. Bosman, H.J. Fan, Journal of Materials Chemistry 22 (2012) 2419-2426.
M.-S. Wu, H.-W. Chang, The Journal of Physical Chemistry C 117 (2013) 2590-2599.
W. Wei, W. Chen, D.G. Ivey, Chemistry of Materials 20 (2008) 1941-1947.
Z.-S. Wu, W. Ren, L. Wen, L. Gao, J. Zhao, Z. Chen, G. Zhou, F. Li, H.-M. Cheng, ACS Nano 4 (2010) 3187-3194.
K. Domen, A. Kudo, T. Onishi, N. Kosugi, H. Kuroda, The Journal of Physical Chemistry 90 (1986) 292-295.
V. Di Castro, G. Polzonetti, Journal of Electron Spectroscopy and Related Phenomena 48 (1989) 117-123.
M.A. Peck, M.A. Langell, Chemistry of Materials 24 (2012) 4483-4490.
M. Fujiwara, T. Matsushita, S. Ikeda, Journal of Electron Spectroscopy and Related Phenomena 74 (1995) 201-206.
H. Li, C.-C. Wang, C.-J. Huang, Y.-F. Sun, W.-Z. Weng, H.-L. Wan, Applied Catalysis A: General 382 (2010) 99-105.
C.W. Na, H.-S. Woo, H.-J. Kim, U. Jeong, J.-H. Chung, J.-H. Lee, CrystEngComm 14 (2012) 3737-3741.
K. Ramesh, L. Chen, F. Chen, Y. Liu, Z. Wang, Y.-F. Han, Catalysis Today 131 (2008) 477-482.
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.