Effects of reaction conditions on the degree of substitution in acetylated nanocellulose
DOI:
https://doi.org/10.51316/jca.2020.065Keywords:
nanocrystals, cellulose, degree of substitutionAbstract
In this study, cellulose nanocrystals (CNC) were chemically extracted from the waste newspapers and acetylated by reacting CNC with acetic anhydride, using sulfuric acid as a catalyst. Response Surface Methodology based on a three-factor factorial design was applied to analyze the interaction effects of reaction temperature, time, and the ratio of nanocellulose and acetic acid (wt/v) on the degree of substitution (DS) which was calculated and compared. Various experimental conditions as reaction temperature (50-70 °C), reaction time (90-150 min), and the ratio of nanocellulose and acetic acid (wt/v) (1:15-1:25) were under investigation. It was found that reaction temperature and its interaction effects have the most significant effects on DS. The acetylated CNC was characterized by FTIR and 1H-NMR spectroscopy. The highest DS (2.997) was obtained in 90 min and the CNC/acetic acid ratio of 1:15 at 70 °C.
Downloads
References
B.M. Trinh, T. Mekonnen, Polymer 155 (2018) 64 -74. https://doi.org/10.1016/j.polymer.2018.08.076
S. Spinella, A. Maiorana, Q. Qian, N.J. Dawson, V. Hepworth, S.A. McCallum, M. Ganesh, K.D. Singer, R.A. Gross, ACS Sustainable Chemistry & Engineering 4 (2016) 1538 - 1550. http://dx.doi.org/10.1021/acssuschemeng.5b01489
Y. Wang, X. Wang, Y. Xie, K. Zhang, Cellulose 25 (2018) 3703 - 3731. http://dx.doi.org/10.1007/s10570-018-1830-3
O. Laitinen, T. Suopajärvi, M. Österberg, H. Liimatainen, ACS Applied Materials & Interfaces 9 (2017) 25029 - 25037. https://doi.org/10.1021/acsami.7b06304
Z. Zhang, P. Tingaut, D. Rentsch, T. Zimmermann, G. Sèbe, ChemSusChem 8 (2015) 2681 - 2690. https://doi.org/10.1002/cssc.201500525
H. Gu, X. Gao, H. Zhang, K. Chen, L. Peng, Ultrasonics Sonochemistry 66 (2020) 104932. https://doi.org/10.1016/j.ultsonch.2019.104932
T. Kakibe, S. Nakamura, K. Amakuni, H. Kishi, Australian Journal of Chemistry 72 (2019) 101. https://doi.org/10.1071/CH18378
A. Villares, C. Moreau, C. Bennati-Granier, S. Garajova, L. Foucat, X. Falourd, B. Saake, J.-G. Berrin, B. Cathala, Scientific Reports 7 (2017) 40262. https://doi.org/10.1038/srep40262
E. Larsson, S.A. Pendergraph, T. Kaldéus, E. Malmström, A. Carlmark, Polymer Chemistry 6 (2015) 1865 - 1874. https://doi.org/10.1039/C4PY01618A
F.Z. Beraich, M. Bakasse, M. Arouch, Synthesis and characterization of cellulose acetate extracted from paper waste, 2016 International Renewable and Sustainable Energy Conference (IRSEC), 2016, 785 - 789. http://dx.doi.org/10.1109/IRSEC.2016.7983970.
A.M. Das, A.A. Ali, M.P. Hazarika, Carbohydrate Polymers 112 (2014) 342 - 349. https://doi.org/10.1016/j.carbpol.2014.06.006
A.M.P. Dewi, Y. Pranoto, D.N. Edowai, E.F. Tethool, International Journal of Advanced Biotechnology and Research 10 (2019) 785 - 791. http://www.bipublication.com/files/ijabr20191113Angela.pdf
M. Elomaa, T. Asplund, P. Soininen, R. Laatikainen, S. Peltonen, S. Hyvärinen, A. Urtti, Carbohydrate Polymers 57 (2004) 261. https://doi.org/10.1016/j.carbpol.2004.05.003
K. Huang, M. Zhang, G. Zhang, X. Jiang, D. Huang, Cellulose Chemistry and Technology 48 (2014) 199 - 207. https://www.cellulosechemtechnol.ro/pdf/CCT3-4(2014)/p.199-207.pdf
P. Luo, C. Cao, Y. Liang, X. Ma, C. Xin, Z. Jiao, J. Cao, J. Zhang, BioResources 8 (2013) 2708 - 2718. https://doi.org/10.15376/BIORES.8.2.2708-2718
R. Ajdary, S. Huan, N. Zanjanizadeh Ezazi, W. Xiang, R. Grande, H.A. Santos, O.J. Rojas, Biomacromolecules 20 (2019) 2770. https://doi.org/10.1021/acs.biomac.9b00527
S. Fischer, K. Thümmler, B. Volkert, K. Hettrich, I. Schmidt, K. Fischer, Macromolecular Symposia 262 (2008) 89. https://doi.org/10.1002/masy.200850210
M.B. Agustin, F. Nakatsubo, H. Yano, Cellulose 23 (2015) 451 - 464. https://doi.org/10.1007/s10570-015-0813-x
M. Elomaa, Carbohydrate Polymers 57 (2004) 261 - 267. https://doi.org/10.1016/j.carbpol.2004.05.003
D.-T. Van-Pham, T.Y.N. Pham, M.C. Tran, C.-N. Nguyen, Q. Tran-Cong-Miyata, Materials Research Express 7 (2020) 065004. https://doi.org/10.1088/2053-1591/ab9668
P. Garside, P. Wyeth, Studies in conservation 48 (2003) 269 - 275,. https://doi.org/10.1179/sic.2003.48.4.269
J. Cao, X. Sun, C. Lu, Z. Zhou, X. Zhang, G. Yuan, Carbohydrate Polymers 149 (2016) 60. https://doi.org/10.1016/j.carbpol.2016.04.086
F.B.D. Silva, W.G. Morais Júnior, C.V.D. Silva, A.T. Vieira, A.C.F. Batista, A.M. Faria, R.M.N. Assunção, Molecules (Basel, Switzerland) 22 (2017). https://doi.org/10.3390/molecules22111930