Research Carbon Ceramic from Cashew Nut Shell Waste and Phenolic Resin Binding Agent
DOI:
https://doi.org/10.51316/jca.2021.133Keywords:
Carbon Ceramic, Woodceramics, Liquefied woodAbstract
In this study, carbon ceramics were fabricated from cashew nut shell waste and phenolic resin. The used phenolic resin in the research was also made from cashew nut shell waste by liquefied wood methods. The sintered degree of carbon ceramics was assessed through physical properties such as bending strength, porosity, and density. The functional groups, phases and microstructure of carbon ceramics were determined by the Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscope (SEM) methods. The results indicated that it was possible to sinter to form carbon ceramics at a low temperature (900oC). Carbon ceramics which were sintered at 900oC had a bending strength of 65.29 MPa, a porosity of 24.17%, and a density of 1.2 g/cm3. The results of phase composition analysis showed that the main phase component of carbon ceramics was amorphous carbon. In addition, phase also appeared the cristobalite mineral. The results of microstructure analysis showed that the carbon ceramics were sintered. However, pores still appeared in the ceramic structure.
Downloads
References
D. Phillips, J. Mater. Sci. 9 (1974) 1847-1854. https://doi.org/10.1007/BF00541756
A. Pirogov, E. Leve, Y. R. Krass, V. Voronin, A. Tkachenko, E. Bulatnikov, L. M. Freidin, V. F. Kosinskii, Refractories 4 (1963) 398-400. https://doi.org/10.1007/BF01285135
G. Jenkins, C. Grigson, J. Biomed. Mater. Res. 13 (1979) 371-394. https://doi.org/10.1002/jbm.820130304
W. Blaedel, J. Wang, Anal. Chem. 51 (1979) 799-802. https://doi.org/10.1021/ac50043a006
G. J. Picha, P. Parks, Y. Nose, Jinko Zoki 3 (1974) 471-478.
H. Suzuki, T. Hase, T. Maruyama, J. Ceram. Assoc. 87 (1979) 430-433. https://doi.org/10.2109/jcersj1950.87.1008_430
M. Kuzenkova, P. Kislyi, B. Grabchuk, N. Bodnaruk, J. Less Common Met. 67 (1979) 217-223. https://doi.org/10.1016/0022-5088(79)90095-X
G. Gnesin, A. Raichenko, Sov. Powder Metall+ 12 (1973) 383-389.
https://doi.org/10.1007/BF00791264
T. Suda, N. Kondo, T. Okabe, J. Porous Mat. 6 (1999) 255-258. https://doi.org/10.1023/A:1009644316468
Y. Xianchun, S. Delin, J. Xiaoqin, H. Xiaofeng, S. Debin, W. Zhangheng, J. Mater. Sci. 55 (2020) 7760-7774.
T. X. Huang, Z. Li, Y. Q. Huang, Y. Li, and P. Xiao. 46(3) (2020) 2592-2601. https://link.springer.com/article/10.1007%2Fs10853-020-04565-y
K. Shibata, T. Okabe, K. Saito, T. Okayama, M. Shimada, A. Yamamura, R. Yamamoto, J. Porous Mat. 4 (1997) 269-275. https://doi.org/10.1023/A:1009625322670
X. C. Yu, D. L. Sun, D. B. Sun, Z. H. Xu, X. S. Li, Wood Sci Technol. 46 (2012) 23-31. https://doi.org/10.1007/s00226-010-0390-y
Y. Guo, S. Gao, W. Yue, C. Zhang, Y. Li, ACS Appl. Mater. Interfaces 11 (2019) 48594-48603. http://dx.doi.org/10.1021/acsami.9b17966
T. Hirose, T. Fujino, T. Fan, H. Endo, T. Okabe, M. Yoshimura, Carbon, 40 (2002) 761-765. https://doi.org/10.1016/S0008-6223(01)00197-X
Q. M. Do, N. M. Huynh, V. U. N. Nguyen, N. T. H. Nguyen, D. T. K. Kieu, T. K. Pham, H. T. Nguyen, Defect Diffus. Forum 394 (2019) 103-108. https://doi.org/10.4028/www.scientific.net/DDF.394.103
K. D. T. Kien, P. DinhTuan, T. Okabe, D. Q. Minh, T. Van Khai, J. Ceram. Process. Res. 19 (2018) 472-478. http://doi.org/10.36410/jcpr.2018.19.6.472
T. Hirose, T. Fan, T. Okabe, M. Yoshimura, J. Mater. Sci. 36 (2001) 4145-4149. https://doi.org/10.1016/S0008-6223%2801%2900197-X
J. Qian, Z. Jin, J. Wang, Mater. Sci. Eng. A 368 (2004), 71-79. https://doi.org/10.1016/j.msea.2003.09.081
H. M. Cheng, H. Endo, T. Okabe, K. Saito, G. B. Zheng, J. Porous Mat. 6(1999) 233-237. https://doi.org/10.1023/A:1009684014651
H. Iizuka, G. Kato, K. Igarashi, S. Shikano, J. Soc. Mater. Sci. Jpn 15 (1996) 1770-1772. https://doi.org/10.2472/jsms.49.625
N. Ahmed, A. Nagaty, O. H. E. Sayed, S. T. Ibrahim, O. Y. Mansour, Walter de Gruyter, 1982, 36(1), 29-35. https://doi.org/10.1515/hfsg.1982.36.1.29
M. Aho, P. Kortelainen, J. Rantanen, V. Linna, J. Anal. Appl. Pyrol. 15 (1989) 297-306. https://doi.org/10.1016/0165-2370(89)85042-9
H. Jiang, J. Wang, S. Wu, Z. Yuan, Z. Hu, R. Wu, Q. Liu, Polym. Degrad. Stab. 97 (2012) 1527-1533. https://doi.org/10.1016/j.polymdegradstab.2012.04.016
C. Morterra, M. Low, Mater. Lett. 2 (1984) 289-293. https://doi.org/10.1016/0167-577X(84)90134-4
Y. Huang, E. Ma, G. Zhao, Ind. Crop. Prod. 69 (2015) 447-455. https://doi.org/10.1016/j.indcrop.2015.03.002
S. H. Jhi, S. G. Louie, M. L. Cohen, Phys. Rev. Lett. 85 (2000) 1710-1713. https://doi.org/10.1103/PhysRevLett.85.1710
Z. Q. Li, C. J. Lu, Z. P. Xia, Y. Zhou, Z. Luo, Carbon 45 (2007) 1686 - 1695. https://doi.org/10.1016/j.carbon.2007.03.038
J. M. Elzea, I. E. Odom, Anal. Chim. Acta. 286 (1994) 107-116. https://doi.org/10.1016/0003-2670(94)80182-7
Y. Han, F. Pan, J. Tang, C. Zhou, Mater. Sci. Forum 686 (2011) 692-695. https://doi.org/10.4028/www.scientific.net/MSF.686.692
J. Wang, IOP C. Ser. Earth Env. 769 (2021) 032030.
https:/doi.org/10.1088/17551315%2F769%2F3%2F032030
Downloads
Published
Issue
Section
How to Cite
Share
Funding data
-
Viet Nam National University Ho Chi Minh City
Grant numbers C2019-20-27