The effect of protic solvents in the conversion of lignin from Earleaf Acacia tree

Authors

  • Vu Bao Khanh Vietnam National University, Ho Chi Minh City, Vietnam Author
  • Huynh Van Phat Ho Chi Minh City University of Food Industry Author
  • Nguyen Kim Truc Vietnam National University, Ho Chi Minh City, Vietnam Author
  • Tran Nguyen Minh An Industrial University of Ho Chi Minh City Author
  • Nguyen Van Cuong Industrial University of Ho Chi Minh City Author
  • Phung Thanh Khoa Vietnam National University, Ho Chi Minh City, Vietnam Author

DOI:

https://doi.org/10.51316/jca.2022.019

Keywords:

Lignin, phenolic compounds, Ru/C catalyst, protic solvent

Abstract

Lignin is one of main components of lignocellulosic along with cellulose and hemicellulose. It is a by-product of the paper and pulp industry, and has aromatic backbones making them an ideal renewable feedstock of aromatic compounds for a range of applications. Catalytic conversion of lignin from Earleaf Acacia tree was performed using high pressure/temperature reactor with Ru/C catalyst and protic solvents. The results showed that the conversion of lignin depends on the solvent polarity of protic solvents, and Ru/C catalyst enhanced the lignin conversion. Phenolic compounds are the main components of lignin conversion. Those compounds can be applied as a basement for bulk chemical and fuels.

Downloads

Download data is not yet available.

References

T.K. Phung, Q.-T.S. Nguyen, K.B. Vu, G. Duy-Le Vo, V.N. Nguyen, Sci. Technol. Dev. J. 23 (2020) 716-726. https://doi.org/10.32508/stdj.v23i4.2442

L. Hu, H. Pan, Y. Zhou, M. Zhang, Bioresour. 6 (2011) 3515−3525.

S.-H. Lee, Y. Teramoto, N. Shiraishi, J. Appl. Polym. Sci. 84 (2002) 468-472. https://doi.org/10.1002/app.10018

J.H. Lora, W.G. Glasser, J. Polym. Environ. 10 (2002) 39-48.

https://doi.org/10.1023/A:1021070006895

R. Gosselink, E. De Jong, B. Guran, A. Abächerli, Ind. Crops Prod. 20 (2004) 121-129. https://doi.org/10.1016/j.indcrop.2004.04.015

C. Li, X. Zhao, A. Wang, G.W. Huber, T. Zhang, Chem. Rev. 115 (2015) 11559-11624. https://doi.org/10.1021/acs.chemrev.5b00155

Y. Zheng, D. Chen, X. Zhu, J. Anal. Appl. Pyrol. 104 (2013) 514-520. https://doi.org/10.1016/j.jaap.2013.05.018

S. Dutta, K.C.W. Wu, B. Saha, Catal. Sci. Technol. 4 (2014) 3785-3799. https://doi.org/10.1039/C4CY00701H

J. Zakzeski, P.C.A. Bruijnincx, A.L. Jongerius, B.M. Weckhuysen, Chem. Rev. 110 (2010) 3552-3599. https://doi.org/10.1021/cr900354u

E.M. Anderson, R. Katahira, M. Reed, M.G. Resch, E.M. Karp, G.T. Beckham, Y. Román-Leshkov, ACS Sustain. Chem. Eng. 4 (2016) 6940-6950. https://doi.org/10.1021/acssuschemeng.6b01858

K.L. Deutsch, B.H. Shanks, Appl. Catal. A 447-448 (2012) 144-150. https://doi.org/10.1016/j.apcata.2012.09.047

X. Huang, T.I. Korányi, M.D. Boot, E.J.M. Hensen, Green Chem. 17 (2015) 4941-4950. https://doi.org/10.1039/C5GC01120E

X. Huang, O.M. Morales Gonzalez, J. Zhu, T.I. Korányi, M.D. Boot, E.J.M. Hensen, Green Chem. 19 (2017) 175-187. https://doi.org/10.1039/C6GC02962K

K.H. Kim, B.A. Simmons, S. Singh, Green Chem. 19 (2017) 215-224. https://doi.org/10.1039/C6GC02473D

S. Van den Bosch, W. Schutyser, S.F. Koelewijn, T. Renders, C.M. Courtin, B.F. Sels, Chem Commun. 51 (2015) 13158-13161. https://doi.org/10.1039/C5CC04025F

J. Zhang, J. Teo, X. Chen, H. Asakura, T. Tanaka, K. Teramura, N. Yan, ACS Catal. 4 (2014) 1574-1583. https://doi.org/10.1021/cs401199f

J.M. Nichols, L.M. Bishop, R.G. Bergman, J.A. Ellman, J. Am. Chem. Soc. 132 (2010) 12554-12555. https://doi.org/10.1021/ja106101f

T. Nimmanwudipong, R.C. Runnebaum, D.E. Block, B.C. Gates, Energy Fuels 25 (2011) 3417-3427. https://doi.org/10.1021/ef200803d

T. Nimmanwudipong, C. Aydin, J. Lu, R.C. Runnebaum, K.C. Brodwater, N.D. Browning, D.E. Block, B.C. Gates, Catal. Lett. 142 (2012) 1190-1196. https://doi.org/10.1007/s10562-012-0884-3

X. Li, T. Guo, Q. Xia, X. Liu, Y. Wang, ACS Sustain. Chem. Eng. 6 (2018) 4390–4399. https://doi.org/10.1039/B816681C

A. Kloekhorst, Y. Shen, Y. Yie, M. Fang, H.J. Heeres, Biomass Bioenergy 80 (2015) 147-161. https://doi.org/10.1016/j.biombioe.2015.04.039

H.M. Baudel, C.A.M. de Abreu, C.Z. Zaror, J. Chem. Technol. Biotechnol. 80 (2005) 230-233. https://doi.org/10.1002/jctb.1155

T.H. Le, K.B. Vu, Q.-T.S. Nguyen, P. Van Huynh, K.-L.T. Huynh, K.D. Tong, T.L.M. Pham, A.T.N. Minh, V.C. Nguyen, T.K. Phung, Sci. Technol. Dev. J. 24 (2021) 1835-1841. https://doi.org/10.32508/stdj.v24i1.2509

M.A. Hossain, T.K. Phung, M.S. Rahaman, S. Tulaphol, J.B. Jasinski, N. Sathitsuksanoh, Appl. Catal. A 582 (2019) 117100. https://doi.org/10.1016/j.apcata.2019.05.034

A. Duval, F. Vilaplana, C. Crestini, M. Lawoko, Holzforschung 70 (2015) 11-20. http://dx.doi.org/10.1515/hf-2014-0346

F. Hu, S. Jung, A. Ragauskas, Bioresour. Technol. 117 (2012) 7-12. https://doi.org/10.1016/j.biortech.2012.04.037

Published

30-04-2022

Issue

Section

Full Articles

How to Cite

The effect of protic solvents in the conversion of lignin from Earleaf Acacia tree. (2022). Vietnam Journal of Catalysis and Adsorption, 11(1), 122-125. https://doi.org/10.51316/jca.2022.019

Share

Funding data

Similar Articles

1-10 of 240

You may also start an advanced similarity search for this article.