Development of a worm-hole structured CuZnO2/MSU Photocatalyst for Enhanced Antibiotic Degradation

Authors

  • Ngo Ha Son Hanoi University of Mining and Geology, 18 Vien street, Hanoi, VIETNAM Author
  • Nguyen Thi Linh AMCA Research Group, Hanoi University of Mining and Geology Author

DOI:

https://doi.org/10.62239/jca.2024.054

Keywords:

MSU, CuZnO2-based photocatalyst, Ciprofloxacin, photodegradation, waste water treatment

Abstract

In this study, a CuZnO2/MSU photocatalyst was developed using a simple method and common resources. Characterization through XRD, BET, EDX, TEM, and SEM techniques revealed its worm-hole structure and uniform CuZnO2 distribution. The catalyst exhibited a reduced band gap of 2.4 eV and a substantial surface area of 307 m²/g, facilitating 94% degradation of Ciprofloxacin (CIP) within 4 hours of light exposure. Further investigation into the photodegradation process showed that a minimal catalyst quantity (10mg) and H2O2 oxidant led to 95% CIP transformation from a 30 ppm concentration, surpassing typical wastewater levels. Optimal efficiency was achieved with a 50/50 Cu2+/Zn2+ ratio, indicating a synergistic effect. These results underscore the CuZnO2/MSU catalyst’s potential for antibiotic remediation in water. 

Downloads

Download data is not yet available.

References

A.V. Samrot, S. Wilson, R.S. Sanjay Preeth, P. Prakash, M. Sathiyasree, S. Saigeetha, N. Shobana, S. Pachiyappan, V.V. Rajesh, Sustainability 15 (2023) 12639. https://doi.org/10.3390/su151612639

Fick, H. Söderström, R.H. Lindberg, C. Phan, M. Tysklind, D.G.J. Larsson, Environmental Toxicology and Chemistry 28 (2009) 2522–2527. https://doi.org/10.1897/09-073.1

O. Alegbeleye, O.B. Daramola, A.T. Adetunji, O.T. Ore, Y.J. Ayantunji, R.K. Omole, D. Ajagbe, S.O. Adekoya, Environ Sci Pollut Res 29 (2022) 56948–57020. https://doi.org/10.1007/s11356-022-21252-4

C.X. Chen, A. Aris, E.L. Yong, Z.Z. Noor, Environ Sci Pollut Res 29 (2022) 4787–4802. https://doi.org/10.1007/s11356-021-17365-x

U. Sen, B. Esteves, T. Aguiar, H. Pereira, Applied Sciences 13 (2023) 11963. https://doi.org/10.3390/app132111963.

X. Bai, W. Chen, B. Wang, T. Sun, B. Wu, Y. Wang, International Journal of Molecular Sciences 23 (2022) 8130. https://doi.org/10.3390/ijms23158130

N. Maldonado-Carmona, G. Piccirillo, J. Godard, K. Heuzé, E. Genin, N. Villandier, M.J.F. Calvete, S. Leroy-Lhez, Photochem Photobiol Sci 23 (2024) 587–627. https://doi.org/10.1007/s43630-024-00536-3

S. San Martín, M.J. Rivero, I. Ortiz, Catalysts 10 (2020) 901. https://doi.org/10.3390/catal10080901

M.A. Hassaan, M.A. El-Nemr, M.R. Elkatory, S. Ragab, V.-C. Niculescu, A. El Nemr, Top Curr Chem (Z) 381 (2023) 31. https://doi.org/10.1007/s41061-023-00444-7

10. M. Náfrádi, G. Veréb, D.S. Firak, T. Alapi, Green Photocatalytic Semiconductors: Recent Advances and Applications, Springer International Publishing, Cham, 2022: 3–31. https://doi.org/10.1007/978-3-030-77371-7_1

S. Ullah, E.P. Ferreira-Neto, A.A. Khan, I.P.M. Medeiros, H. Wender, Photochem Photobiol Sci 22 (2023) 219–240. https://doi.org/10.1007/s43630-022-00299-9

A.B. Migdadi, M.K. Alqadi, F.Y. Alzoubi, H.M. Al-Khateeb, W.T. Bani-Hani, J Mater Sci: Mater Electron 33 (2022) 26744–26763. https://doi.org/10.1007/s10854-022-09341-z

K. Thangavelu, G. Abimannan, R. Rajendran, P. Arumugam, Ionics (2024). https://doi.org/10.1007/s11581-024-05603-4

M. Nasiruddin Khan, A. Sarwar, Surf. Rev. Lett. 14 (2007) 461–469. https://doi.org/10.1142/S0218625X07009517.

W. Muhammad, N. Ullah, M. Haroon, B. Haider Abbasi, RSC Advances 9 (2019) 29541–29548. https://doi.org/10.1039/C9RA04424H

A. Roy, A. Majumdar, J Mater Sci: Mater Electron 32 (2021) 27823–27836. https://doi.org/10.1007/s10854-021-07165-x

Y. Dadban Shahamat, M. Sadeghi, A. Shahryari, N. Okhovat, F. Bahrami Asl, M.M. Baneshi, Desalination and Water Treatment 57 (2016) 20447–20456. https://doi.org/10.1080/19443994.2015.1115372

H.-S. Ngo, T.-L. Nguyen, N.-T. Tran, H.-C. Le, Water 15 (2023) 1569. https://doi.org/10.3390/w15081569

A.S. Mutia, T. Ariyanto, I. Prasetyo, Water Air Soil Pollut 233 (2022) 146. https://doi.org/10.1007/s11270-022-05618-5

N. Javid, Z. Honarmandrad, M. Malakootian, DWT 174 (2020) 178–185. https://doi.org/10.5004/dwt.2020.24855

T.T. Minh, N.T.T. Tu, T.T. Van Thi, L.T. Hoa, H.T. Long, N.H. Phong, T.L.M. Pham, D.Q. Khieu, Journal of Nanomaterials 2019 (2019) 5198045. https://doi.org/10.1155/2019/5198045

S. Pal, S. Maiti, U.N. Maiti, K.K. Chattopadhyay, CrystEngComm 17 (2015) 1464–1476. https://doi.org/10.1039/C4CE02159B

R. Saravanan, S. Karthikeyan, V.K. Gupta, G. Sekaran, V. Narayanan, A. Stephen, Materials Science and Engineering: C 33 (2013) 91–98. https://doi.org/10.1016/j.msec.2012.08.011

A. Enesca, L. Isac, T Materials 13 (2020) 2494. https://doi.org/10.3390/ma13112494

M. Náfrádi, G. Veréb, D.S. Firak, T. Alapi, Green Photocatalytic Semiconductors: Recent Advances and Applications, Springer International Publishing, Cham, 2022: 3–31. https://doi.org/10.1007/978-3-030-77371-7_1

T. Hirakawa, K. Yawata, Y. Nosaka, Applied Catalysis A: General 325 (2007) 105–111. https://doi.org/10.1016/j.apcata.2007.03.015

Published

30-09-2024

Issue

Section

GSCE2024

How to Cite

Development of a worm-hole structured CuZnO2/MSU Photocatalyst for Enhanced Antibiotic Degradation. (2024). Vietnam Journal of Catalysis and Adsorption, 13(3), 29-35. https://doi.org/10.62239/jca.2024.054

Share

Similar Articles

1-10 of 250

You may also start an advanced similarity search for this article.