Study of Ni(0)/La2O3 perovskite coated on monolith substrates as a promising catalyst for CO2 dry reforming with steam reforming of methane in syn-gas production
DOI:
https://doi.org/10.51316/jca.2021.018Keywords:
Perovskite/Monolith, CO2 Reforming , Steam Reforming, Methane, Syngas productionAbstract
Coated monolith/foam catalysts are promising materials for chemistry applications due to structured reactor configuratiions providing low expansion coefficient, good thermal stability and low pressure loss. In this study, powedered Ni(0)/La2O3 catalysts in perovskite structures, were deposited on cordierite monolith substrates (2MgO-2Al2O3-5SiO2) by dip-coating method. The catalysts were characterized by N2 adsorption, XRD, TPR-H2 analysis. The activity of structured catalysts with various powder loadings (4, 8, 12, 20 and 30 wt %) were evaluated in combined Steam-CO2 reforming reaction (CH4/CO2/H2O = 2/1/2 vol%) at GHSV = 60.000 h-1. XRD and TPR results showed that the active phase LaNiO3 were mainly Ni and La2O3 distributed on the surface of cordierite channels after air calcination of 850oC, 3 hours and hydrogen reduction of 600oC, 2 hours . The conversion of methane and CO2 on monolith catalysts, with proper active sites loadings of 12 – 20 wt%, were close to 80 vol% at 800oC. At the same reaction amount of active sites, the feedstock conversion on LaNiO3/monolith (12 %wt LaNiO3/monolith) was significantly higher than on corresponding powdered type, respectively 1.6 times of CH4, 1.8 times of CO2 conversion.
Downloads
References
Trương Minh Huệ, Sản xuất các sản phẩm hóa dầu từ khí thiên nhiên mỏ Cá Voi Xanh, Tạp chí Petrovietnam 2017.
Song C., Chem. Inno. 31(2001) 21 - 26. EDB-01:025501
Choudhary, Appl. Ener. 83(2006) 1024 - 1032. https://doi.org/10.1016/j.apenergy.2005.09.008
Peymani M., Alavi S.M, and Rezaei, Appl. Catal. A: General 529(5)(2017) 1 - 9. https://doi.org/10.1016/j.apcata.2016.10.012
Peymani M., J. Hydro. Ener. 41(42)( 2016) 19057-19069. https://doi.org/10.1016/j.ijhydene.2016.07.072
Hamidreza F.H., Chem. Eng. Sci. 2011. https://doi.org/10.1016/j.ces.2011.04.030
Sharma P.O., Chem. Res. 46(2007) 9053-9060. https://doi.org/10.1021/ie070373+
Srisurat T., Adv. Mater. Res. 5(2013) 1257-1264. https://doi.org/10.4028/www.scientific.net/AMR.805-806.1257
Yang E.H, Inter. J. Hydro Ener. 40(2015) 11831-11839. https://doi.org/10.1016/j.ijhydene.2015.06.021
Moon D.J, Fuel Process. Technol. 124(2014) 97-103. https://doi.org/10.1016/j.fuproc.2014.02.021
Moon D.J, Catal. Today, 299(2018) 242-250. https://doi.org/10.1016/j.cattod.2017.03.050
Zhang and Verykios, Appl. Catal. A: General 138(1)( 1996) 109-133. https://doi.org/10.1016/0926-860X(95)00238-3
Gallego G.S., Ind. Eng. Chem. Res. 47(2008) 9272-9278. https://doi.org/10.1021/ie800281t
Trần Văn Trí, Tạp chí xúc tác hấp phụ 6(2)( 2017) 135-141.
Trần Văn Trí, Tạp chí xúc tác và hấp phụ 8(2019) 55-62.
Raj, Harold and Balakotaiah, Chem.l Eng. J. 254(2014) 452-462. https://doi.org/10.1016/j.cej.2014.05.105
Tomasic V., Catal. Today 119(2007) 106-113. https://doi.org/10.1016/j.cattod.2006.08.047
Villegas L., Appl. Catal. A: General 320(2007) 43–55. https://doi.org/10.1016/j.apcata.2006.12.011
Ouzzine M., Appl. Catal. A: General 342(2008) 150–158. https://doi.org/10.1016/j.apcata.2008.03.014
Neda Mazinanian, Regulatory Toxicol. Pharma. 65(2013) 135-146. https://doi.org/10.1016/j.yrtph.2012.10.014
Maneerung T., Catal. Today 171(2011) 26-27. https://doi.org/10.1016/j.cattod.2011.03.080
Olah G.A., J. Ame. Chem. Soc. 135(2)(2012) 648-650. https://doi.org/10.1021/ja311796n
Jarvi G.A., Chem. Eng. Commu. 4(1980) 325-341.
Arendt E., Appl. Catal. A: General 339(2008) 1–14. https://doi.org/10.1016/j.apcata.2008.01.016