Study the structure, stability and CO2 adsorption of the ScVB5 cluster

Authors

  • Nguyen Minh Thao University of Science, Viet Nam National University Ho Chi Minh City | Dong Thap University Author
  • Bui Tho Thanh University of Science, Viet Nam National University Ho Chi Minh City Author

DOI:

https://doi.org/10.51316/jca.2022.008

Keywords:

CO2 adsorption, density functional theory, genetic algorithm, ScVB5 cluster

Abstract

A combination of genetic algorithm and density functional theory (GA-DFT) was used to calculate the minimum structures of ScVB5 clusters. The thirteen isomers of ScVB5 cluster were investigated at the level of PBE/def2-TZVPP, TPSSh/def2-TZVPP, and TPSSh/def2-QZVP levels. The relative energies, the structural geometry, ionization energy, affinity energy of neutral isomers were reported. The ScVB5 cluster can be formed by adding atom into smaller clusters. The proposed structure of ScVB5 cluster for CO2 treatment is a pentagonal bipyramid in the Cs symmetry with vanadium atom at one of the vertices and scandium atom in the base of bipyramid. The favor position for adsorp CO2 by the ScVB5 cluster were at around of Sc and V atoms. The dual transition metal-doped boron clusters can interact with CO2 molecules stronger than pure boron clusters. 

Downloads

Download data is not yet available.

References

H. Lei, Z. Hou, J. Xie, Fuel 164 (2016) 191. https://doi.org/10.1016/j.fuel.2015.09.082

Y. Yang, H. Gao, J. Feng, S. Zeng, L. Liu, L. Liu, B. Ren, T. Li, S. Zhang, X. Zhang, ChemSusChem 13 (2020) 4900. https://doi.org/10.1002/cssc.202001194

H.T. Pham, M.P. Pham-Ho, M.T. Nguyen, Chemical Physics Letters 728 (2019) 186. https://doi.org/10.1016/j.cplett.2019.04.087

H. Jiang, L. Ma, Q. Yang, Z. Tang, X. Song, H. Zeng, C. Zhi, Solid State Commun. 294 (2019) 1. https://doi.org/10.1016/j.ssc.2019.02.010

H. Bai, M. Ma, J. Zuo, Q.F. Zhang, B. Bai, H. Cao, W. Huang, Phys Chem Chem Phys 21 (2019) 15541. https://doi.org/10.1039/c9cp02380a

W. Wang, X. Zhang, P. Li, Q. Sun, Z. Li, C. Ren, C. Guo, J. Phys. Chem. A 119 (2015) 796. https://doi.org/10.1021/jp511669w

S.S. Ray, S.R. Sahoo, S. Sahu, Int. J. Hydrog. Energy 44 (2019) 6019. https://doi.org/10.1016/j.ijhydene.2018.12.109

T. Jian, W.-L. Li, I.A. Popov, G.V. Lopez, X. Chen, A.I. Boldyrev, J. Li, L.-S. Wang, J. Chem. Phys. 144 (2016) 154310. https://doi.org/10.1063/1.4946796

F. Cui-Ju, M.I. Bin-Zhou, J. Magn. Magn. Mater. 405 (2016) 117. https://doi.org/10.1016/j.jmmm.2015.12.060

I.A. Popov, T. Jian, G.V. Lopez, A.I. Boldyrev, L.-S. Wang, Nat. Commun. 6 (2015) 8654. https://doi.org/10.1038/ncomms9654

J. Jia, X. Li, Y. Li, L. Ma, H.-S. Wu, Comput. Theor. Chem. 1027 (2014) 128. https://doi.org/10.1016/j.comptc.2013.11.008

J. Jia, L. Ma, J.-F. Wang, H.-S. Wu, J. Mol. Model. 19 (2013) 3255. https://doi.org/10.1007/s00894-013-1860-6

G.-x. Ge, Q. Jing, H.-b. Cao, H.-x. Yan, J. Cluster Sci. 23 (2012) 189.

https://doi.org/10.1007/s10876-011-0419-x

D. Tzeli, A. Mavridis, J. Chem. Phys. 128 (2008) 034309. https://doi.org/10.1063/1.2821104

X. Liu, G.-f. Zhao, L.-j. Guo, Q. Jing, Y.-h. Luo, Phys. Rev. A 75 (2007) 063201. https://doi.org/10.1103/PhysRevA.75.063201

H. Tan Pham, M.T. Nguyen, J. Phys. Chem. A 123 (2019) 8170. https://doi.org/10.1021/acs.jpca.9b04078

Q. Zhang, H. Qu, M. Chen, M. Zhou, J. Phys. Chem. A 120 (2016) 425. https://doi.org/10.1021/acs.jpca.5b11809

Y. Minenkov, E. Chermak, L. Cavallo, J. Chem. Theory. Comput. 11 (2015) 4664. https://doi.org/10.1021/acs.jctc.5b00584

C. Riplinger, F. Neese, J. Chem. Phys. 138 (2013) 034106. https://doi.org/10.1063/1.4773581

Y. Guo, C. Riplinger, D.G. Liakos, U. Becker, M. Saitow, F. Neese, J. Chem. Phys. 152 (2020) 024116. https://doi.org/10.1063/1.5127550

P. Jennings, R. Johnston, Comput. Theor. Chem. 1021 (2013) 91. https://doi.org/10.1016/j.comptc.2013.06.033

H.A. Hussein, R.L. Johnston, Frontiers of Nanoscience, Elsevier, 2019, p. 145.

S. Xue, H. Tang, J. Zhou, J. Asian Archit. Build. Eng. 8 (2018) 517. https://doi.org/10.3130/jaabe.8.517

P. Mitikiri, G. Jana, S. Sural, P.K. Chattaraj, Int. J. Quantum Chem. 118 (2018) e25672. https://doi.org/10.1002/qua.25672

A.R. Oganov, C.W. Glass, J. Chem. Phys. 124 (2006) 244704. https://doi.org/10.1063/1.2210932

A.O. Lyakhov, A.R. Oganov, H.T. Stokes, Q. Zhu, Comput. Phys. Commun. 184 (2013) 1172. https://doi.org/10.1016/j.cpc.2012.12.009

A.R. Oganov, A.O. Lyakhov, M. Valle, Acc. Chem. Res. 44 (2011) 227. https://doi.org/10.1021/ar1001318

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, J. Condens. Matter Phys. 21 (2009) 395502. https://doi.org/10.1088/0953-8984/21/39/395502

J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865. https://doi.org/10.1103/PhysRevLett.77.3865

K.P. Jensen, Inorganic Chemistry 47 (2008) 10357. https://doi.org/10.1021/ic800841t

F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 7 (2005) 3297. https://doi.org/10.1039/B508541A

C. Herzbong, Molecular spectra and molecular structure II. Infrared and roman spectra of poly atomic molecules, 1951, p. 288.

T. Lu, F. Chen, J. Comput. Chem. 33 (2012) 580. https://doi.org/10.1002/Jcc.22885

Published

30-04-2022

Issue

Section

Full Articles

How to Cite

Study the structure, stability and CO2 adsorption of the ScVB5 cluster. (2022). Vietnam Journal of Catalysis and Adsorption, 11(1), 48-58. https://doi.org/10.51316/jca.2022.008

Share

Similar Articles

1-10 of 188

You may also start an advanced similarity search for this article.