Synthesis and application of biochar from agricultural by-products. Effect of pyrolysis temperature on the acid-base properties of biochar

Authors

  • Phung Thi Lan Faculty of Chemistry, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam Author
  • Vu Tran The Hien Faculty of Chemistry, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam Author
  • Phan Đinh Khanh Nguyen Faculty of Chemistry, College of Education, Vinh University, 182 Le Duan, Vinh, Nghe An, Vietnam Author
  • Le Minh Cam Faculty of Chemistry, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam. Thanh Do University QL 32, Kim Chung, Hoai Duc, Ha Noi, Vietnam Author

DOI:

https://doi.org/10.62239/jca.2024.044

Keywords:

Biochar, agriculture by product, pyrolysis methylene Blue, adsorption kinetics

Abstract

Biochar was synthesized from banana peels using the pyrolysis method in a nitrogen gas environment. The pyrolysis temperature ranged from 100°C to 500°C with a heating rate of 5°C per minute and a pyrolysis time of 1.5 hours. The influence of the pyrolysis temperature on the acid-base properties of the biochar surface was evaluated through characteristic SEM and BET measurements. Boehm titration showed a gradual decrease in the total acid functional groups and an increase in the total base functional groups with the increasing pyrolysis temperature. Methylene Blue (MB) was used as a model substance to investigate the adsorption properties of the synthesized biochar. The Langmuir and Freundlich models were employed to describe the adsorption equilibrium. The kinetics of MB adsorption followed a pseudo-second-order kinetic equation. The adsorption capacity of MB by biological charcoal was influenced by the acid-base properties of the material, indicating the impact of the pyrolysis temperature.

Downloads

Download data is not yet available.

References

B. Ahmad, V. Yadav; A. Yadav, M.U. Rahman, W.Z Yuan, Z. Li, X. Wang, Sci. Total Environ. 719 (2020) 137315. https://doi.org/10.1016/j.scitotenv.2020.137315

X. Xiao, B. Chen, Z. Chen, L. Zhu, J.L. Schnoor, Environ. Sci. Technol. 52 (2018) 5027–5047. https://doi.org/10.1021/acs.est.7b06487

A. F. Sanromán, M. Pazos, E. Rosales, M. A. Sanromán, Appl. Sci. 10 (2020) 7810. https://doi.org/10.3390/app10217810

N. Cheng, B. Wang, B. Wu, X. Lee, Y. Xing, M. Chen, B. Gao, Environ. Pollut. 273 (2021) 116448. https://doi.org/10.1016/j.envpol.2021.116448

T. D. Minh, J. Song, A. Deb, L. Cha, V. Srivastava, M. Sillanpää, Chem. Eng. J. 394 (2020) 124856. https://doi.org/10.1016/j.cej.2020.124856

C. Zhang, Z. Zhang, L. Zhang, Q. Li, C. Li, G. Chen, S. Zhang, Q. Liu, X. Hu, Technol. 304 (2020) 123002. https://doi.org/10.1016/j.biortech.2020.123002

F. R. Oliveira, A. K. Patel, D.P. Jaisi, S. Adhikari, H. Lu, S. K. Khanal, Bioresour. Technol. 246 (2017) 110e122. https://doi.org/10.1016/j.biortech.2017.08.122

B. Wang, B. Gao, J. Fang, Crit. Rev. Environ. Sci. Technol. 47 (2017) 2158e2207. https://doi.org/10.1080/10643389.2017.1418580

R. Li, Y. Zhang, H. Deng, Z. Zhang, J.J. Wang, S.M. Shaheen, R. Xiao, J. Rinklebe, B. Xi, X. He, J. Du, J. Hazard Mater. 384 (2020), 121095. https://doi.org/10.1016/j.jhazmat.2019.121095

P. Krasucka, B. Pan, Y. Sik Ok, D. Mohan, B. Sarkar, P. Oleszczuk, Chem. Eng. J. 405 (2021) 126926. https://doi.org/10.1016/j.cej.2020.126926

M. B. Ahmed, J.L. Zhou, H.N. Ngo, W. Guo, Biomass Bioenergy 84 (2016) 76 - 86. https://doi.org/10.1016/j.biombioe.2015.11.002.

C. Keske, T. Godfrey, D.L.K. Hoag, J. Abedin, Food Energy Secur. 9 (2020) e188. https://doi.org/10.1002/fes3.188

Y. Li, B. Xing, Y. Ding, X. Han, S. Wang, Bioreour. Techno., 312 (2020), 123614. https://doi.org/10.1016/j.biortech,

L.Wang, W. Yan, C. He, H. Wen, Z.Cai, Z. Wang, Z. Chen, W. Liu, Appl. Surf. Sci. 433 (2018) 222 - 231. http://dx.doi.org/10.1016/j.apsusc.2017.10.031

X. Zhang, P. Zhang, X. Yuan, Y. Li, L. Han, Bioresour. Technol. 296 (2020) 122318. https://doi.org/10.1016/j.biortech.2019.122318

X. Zheng, Y. Zhou, X. Liu, X. Fu, H. Peng, S. Lv, Bioresour. Technol. 297 (2020) 122413, 2020]. https://doi.org/10.1016/j.biortech.2019.122413

J. Li, Z. Liu, Y. Tian, Y. Zhu, S. Qin, Y. Qiao, Bioresour. Technol. 304 (2020) 122735 https://doi.org/10.1016/j.biortech.2020.122735

J. S. Calisto, I. S. Pacheco, L. L. Freitas, L. K. Santana, W. S. Fagundes, F. A. Amaral, S. C. Canobre, Heliyon 5 (2019). 6;5(12):e02553.https://doi.org/10.1016/j.heliyon.2019.e02553 e02553

S. Liu, J. Li, S. Xu, M. Wang, Y. Zhang, X. Xue, Bioresour. Technol. 282 (2019) 48–55. https://doi: 10.1016/j.biortech.2019.02.092

M. Mian, and G. Liu, Chemosphere 215 (2019) 101-104.https://doi.org/10.1016/j.chemosphere.2018.10.027

S. Al. Mousavi, D. Shahbazi, A. Mahmoudi and P. Darvishi, Water Qual. Res. J. 57 (1) (2021) 1 - 19. https:// doi.org/10.2166/wqrj.2021.015

Y. Kuang, X. Zhang, S. Zhou, Water 12(2) (2020) 587. http://doi.org/10.3390/w12020587

H. M. El-Bery, M. Saleh, R. A. El-Gendy, M. R. Saleh, S. M. Thabet, Scientific Reports (2022) 12:5499. http://doi.org/10.1038/s41598-022-0945-4

J. Fito, M. Abewaa, A. Mengistu, Sci. Rep. 13 9 (2023), 5427. https://doi.org/10.1038/s41598-023-32341-w.

S. Yu, Y. Liu, Y. Ai, X. Wang, R. Zhang, Z. Chen, Z. Chen, G. Zhao, X. Wang, Env. Pollut. 242 part A (2018) 1-11. https://doi.org/10.1016/j.envpol.2018.06.031

Published

02-07-2024

Issue

Section

Full Articles

How to Cite

Synthesis and application of biochar from agricultural by-products. Effect of pyrolysis temperature on the acid-base properties of biochar. (2024). Vietnam Journal of Catalysis and Adsorption, 12(2), 7-12. https://doi.org/10.62239/jca.2024.044

Share

Similar Articles

1-10 of 203

You may also start an advanced similarity search for this article.