Effect of monovalent ion electrolyte on energy storage mechanism of nanocomposites TiO2@CNTs
DOI:
https://doi.org/10.51316/jca.2021.136Keywords:
Electrolyte, capacitance, TiO2, supercapacitorAbstract
Electrolyte plays the vital role of carrying ions in the operation of chemical power sources. In this work, the lithium, sodium and posstasium-based aqueous electrolytes were performed in the supercapacitor using nano TiO2 electrode. The anataste phase TiO2 was prepared via sol-gel route, which were charaterized by Scanning Electron Microscope (SEM), X-Ray Diffraction (XRD), Thermogravimetric analysis (TGA), and Raman. The electrochemical behaviors were conducted by cyclic voltammetry and charge-discharge cycling test. Electrochemical results showed TiO2@CNTs exhibited the pseudocapacitor behavior through the quasi-rectangle voltammetry, the maximum capacity achived using Li2SO4 1M is 245 F/g and Na2SO4 1M is 168 F/g at scan rate of 5 mV/s.
Downloads
References
D. J. Ahirrao, H. M. Wilson, N. Jha, Appl. Surf. .Sci. 491 (2019) 765-778. https://doi.org/10.1016/j.apsusc.2019.05.076
J. Sudarto, A. Subagio, P. Priyono, P. Pardoyo, R. Yudianti, ,S. Subhan, Makara J. Sci. 21(2) (2017) 53–58. https://doi.org/10.7454/mss.v21i2.4230
F. Naeem, S. Naeem, Y. Zhao, Di. Wang, J. Zhang, Y. Mei, G. Huang, Nanoscale Res. Lett. 14 (2019) 92. https://doi.org/10.1186/s11671-019-2912-3
P. Simon, Y. Gogotsi, Nat. Mater. 2008 7(11) 845–854. https://doi.org/10.1038/nmat22975.
B. E. Conway, Electrochem Supercapacitors (1999). https://doi.org/10.1007/978-1-4757-3058-6_2
A. Burke, J. Power Sources 91(1) (2000) 37–50. https://doi.org/10.1016/S0378-7753(00)00485-7
V. H. Pham, T. D. Nguyen-Phan, X. Tong, B. Rajagopalan, J. S. Chung, J. H. Dickerson, Carbon N. Y. 126 (2018) 135–144. https://doi.org/10.1016/j.carbon.2017.10.026
S. Yang, Y. Li, J. Sun, B. Cao, J. Power Sources 431 (January) (2019) 220–225. https://doi.org/10.1016/j.jpowsour.2019.05.016
L. Xia, L. Yu, D. Hu, G. Z. Chen, Mater. Chem. Front. 1(4) (2017) 584–618. https://doi.org/10.1039/C6QM00169F
G. Wang, L. Zhang, J. Zhang, Chem. Soc. Rev. 41(2) (2012) 797–828.
https://doi.org/10.1039/c1cs15060j
A. Cartón, F. Sobrón, S. Bolado, J. I. Gerbolés, J. Chem. Eng. Data 40(4) (1995) 987–991. https://doi.org/10.1021/JE00020A057
I. M. Abdulagatov, N. D. Azizov, Int. J. Thermophys., 26(3) (2005) 593–635. https://doi.org/10.1007/s10765-005-5567-5
I. M. Abdulagatov, A. Zeinalova, N. D. Azizov, Fluid Phase Equilib. 227(1) (2005) 57–70. https://doi.org/10.1016/j.fluid.2004.10.028
M. M. Vadiyar, S. C. Bhise, S. K. Patil, S. S. Kolekar, J. Y. Chang, A. V. Ghule, ChemistrySelect 1(5) (2016) 959–966. https://doi.org/10.1002/slct.201600151
D. Aurbach, B. Markovsky, G. Salitra, E. Markevich, Y. Talyossef, M. Koltypin, L. Nazar, B. Ellisb, D. Kovacheva, J. Power Sources 165(2) (2007) 491–499.
https://doi.org/10.1016/j.jpowsour.2006.10.025
R. M. Silva, A. C. Bastos, F. J. Oliveira, D. E. Conte, Y. Fan, N. Pinna, R. F. Silva, J. Mater. Chem. A 3(34) (2015) 17804–17810. https://doi.org/10.1039/C5TA03734D
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
Share
Funding data
-
National Foundation for Science and Technology Development
Grant numbers 02/2020/TN