Enhancement of electrochemical behavior with additives for vanadium redox flow battery electrolyte
DOI:
https://doi.org/10.62239/jca.2021.087Keywords:
Energy storage, Redox flow battery, Vanadium electrolyte Additives, Electrochemical behaviorAbstract
The electrolyte is the key component in vanadium redox flow batteries (V-RFB), serving both as an ion-conducting medium to complete the electrical circuit and as a storage for energy in its chemical form. The electrolyte's concentration directly affects the battery's storage capacity. Typically, the electrolyte in a V-RFB consists of a vanadium-based mixture in various oxidation states, combined with supporting solvents like hydrochloric (HCl) and sulfuric (H2SO4) acids. To enhance these batteries' performance, improving the electrolyte's properties is essential, particularly to sustain charge/discharge cycles over time. This research assessed the impact of various organic additives on the electrolyte's performance in V-RFBs. Techniques like cyclic voltammetry (CV) and charge-discharge testing were employed to study their electrochemical effects. The findings indicate that these additives enhance the redox reaction's reversibility, diminish the potential drop during charging and discharging, and amplify the peaks of oxidation and reduction signals. In tests, the V-RFBs, when augmented with suitable additives, demonstrated stable operation with a charge-discharge efficiency exceeding 75%.
Downloads
References
A. Aluko and A. Knight, IEEE Access, Institute of Electrical and Electronics Engineers Inc. 11 (2023) 13773-13793. https://doi.org/10.1109/ACCESS.2023.3243800
K. Lourenssen, J. Williams, F. Ahmadpour, R. Clemmer, and S. Tasnim, Journal of Energy Storage, Elsevier Ltd, 25 (2019). https://doi.org/10.1016/j.est.2019.100844.3
J. Martin, K. Schafner, and T. Turek, Energy Technology, 8(9) (2020). https://doi.org/10.1002/ente.202000522
A. Loskutov, A. Kurkin, I. Kuzmin, and I. Lipuzhin, Batteries, 8(9) (2022). https://doi.org/10.3390/batteries8090120
Y. Guo, J. Huang, and J. K. Feng, Journal of Industrial and Engineering Chemistry, Korean Society of Industrial.
M. Skyllas-Kazacos, L. Cao, M. Kazacos, N. Kausar, and A. Mousa, ChemSusChem, Wiley-VCH Verlag 9(13) (2016) 1521-1543. https://doi.org/10.1002/cssc.201600102
M. Ding, T. Liu, and Y. Zhang, Energy and Fuels, 34(5) (2020) 6430-6438. https://doi.org/10.1021/acs.energyfuels.0c00063
W. Tian, H. Du, J. Z. Wang, J. J. Weigand, J. Qi, S. Wang and L. Li, Materials (2023). https://doi.org/10.3390/ma16134582
L. Cao, M. Skyllas-Kazacos, C. Menictas and J. Noack, Journal of Energy Chemistry (2018). https://doi.org/10.1016/j.jechem.2018.04.007
L. Chen, T. Liu, Y. Zhang, H. Liu, M. Ding and D. Pan, Energies (2022). https://doi.org/10.3390/en15072454
Z. H. Zhang, L. Wei, M.C. Wu, B. F. Bai and T. S. Zhao, Applied Energy (2021). https://doi.org/10.1016/j.apenergy.2021.116690
J. Hwang, B. Kim, J. Moon, A. Mehmood and H. Y. Ha, Journal of Materials Chemistry A (2018), https://doi.org/10.1039/c7ta10211a
W. Li, R. Zaffou, C. C. Sholvin, M. L. Perry, and Y. She, ECS Trans 53(7) (2013) 93 (L. Chen, 2022)-99. https://doi.org/10.1149/05307.0093ecst
T. V. Dung, L. M. Khang, L. P. Linh, H. A. Tam, N. H. Anh, T. T. Tuan, H. T. B. Thuy, N. T. T. Huyen, H. L. T. Nguyen and H. D. Chinh, Journal of Applied Electrochemistry (2023). https://doi.org/10.1007/s10800-023-02004-9
G. Wang, J. Chen, X. Wang, J. Tian, H. Kang, X. Zhu, Y. Zhang, X. Liu, R. Wang, Journal of Energy Chemistry (2014). https://doi.org/10.1016/S2095-4956(14)60120-0
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Vietnam Journal of Catalysis and Adsorption
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
Share
Funding data
-
Bộ Giáo dục và Ðào tạo
Grant numbers CT2022.04. BKA.05