Gram-scale nucleophilic aromatic substitution of 4,7-dibromo-5,6-difluoro-[2,1,3]-benzothiadiazole for Synthesis of 4,7-dibromo-5,6-BINOL-O-benzo[2,1,3]thiadiazole, and 4,7-dibromo-5,6-dicarbazol-N-ylbenzo[2,1,3]thiadiazole. The Stille coupling reaction and continuous Heck coupling reaction for synthesis of 4,7-bispara-chlorophenyl-5,6-dicarbazol-N-ylbenzo[2,1,3]thiadiazole
DOI:
https://doi.org/10.62239/jca.2025.065Keywords:
FeS2, g-C3N4, anode, lithium-ion batteryAbstract
In this study, we delveloped a simple and efficient synthetic procedure for the nucleophilic substitution of 4,7-dibromo-5,6-diflourobenzo[2,1,3]thiadiazole with diols, diamines and carbazole to obtain 4,7-dibromo-5,6-dinucleophile-benzo[2,1,3]diadiazole derivatives. The chiral version of BINOL and BINAM, based on (R-/S-) atropisomers of binaphthyl, were employed as nucleophilic reagents under bases (DBU 1,8-diazabicyclo[5.4.0]undec-7-ene and/or K2CO3). The nucleophillic carbazol-N-yl sodium species were synthesized via recrystallized and subsequent treatment in dried DMF and in the presence of strong base as NaH. All three nucleophiles participated successfully in the SnAr reaction, affording excellent yields with BINAM and quantitative yields with carbazole and BINOL.
Downloads
References
B.A.D. Neto, J.R. Correa, J. Spencer, Chem. Eur. J., 28(4) (2022) e202103262. https://doi.org/10.1002/chem.202103262
H. Gu, W. Liu, H. Li, W. Sun, J. Du, J. Fan, X. Peng, Coord. Chem. Rev., 473 (2022) 214803. https://doi.org/10.1016/j.ccr.2022.214803
X. Feng, G. Yang, L. Liu, F. Lv, Q. Yang, S. Wang, D. Zhu, Adv. Mater., 24(5) (2012) 637–641. https://doi.org/10.1002/adma.201102026
G.J. Shi, K.K. Tan, S.Y. Liu, H. Zhang, H.R. Hu, K.P. Wang, L.Z. Xu, M. Li, Z.Q. Hu, Chem. Commun., 58(97) (2022) 13596–13599. https://doi.org/10.1039/D2CC04944F
Q. Nie, A. Tang, Q. Guo, E. Zhou, Nano Energy, 87 (2021) 106174. https://doi.org/10.1016/j.nanoen.2021.106174
F.C. Kong, S.Y. Yang, X.J. Liao, Z.Q. Feng, W.S. Shen, Z.Q. Jiang, D.Y. Zhou, Y.X. Zheng, L.S. Liao, Adv. Funct. Mater., 32(23) (2022) 2201512. https://doi.org/10.1002/adfm.202201512
L. Zhu, D. Liu, K. Wu, G. Xie, Z. Zhao, B.Z. Tang, Chem. Res. Chin. Univ., 40(4) (2024) 657–663. https://doi.org/10.1007/s40242-024-4123-4
S.J. Brown, J. Zhao, E. Forehand, L. Dobrzycki, R. Roy, A.M.M. Hasan, W. Ding, C. Schaack, A.M. Evans, J. Am. Chem. Soc., 147(11) (2025) 3769–3775. https://doi.org/10.1021/jacs.4c16566
H. Shi, L. Zou, K. Huang, H. Wang, C. Sun, S. Wang, H. Ma, Y. He, J. Wang, H. Yu, W. Yao, Z. An, Q. Zhao, W. Huang, ACS Appl. Mater. Interfaces, 11(20) (2019) 18103–18110. https://doi.org/10.1021/acsami.9b01615
T.T. Dang, B. Ramalingam, S.P. Shan, A.M. Seayad, ACS Catal., 3(11) (2013) 2536–2540. https://doi.org/10.1021/cs400799n
D. Ramón, A. Martínez-Asencio, M. Yus, Synthesis, 2011(23) (2011) 3730–3740. https://doi.org/10.1055/s-0030-1260238
R. Pothikumar, V.T. Bhat, K. Namitharan, Chem. Commun., 56(88) (2020) 13607–13610. https://doi.org/10.1039/D0CC05912A
J. Shotbolt-Brown, D.W.F. Hunter, J. Aislabie, Can. J. Microbiol., 42(1) (1996) 79–83. https://doi.org/10.1139/m96-012
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Nguyen Van Gioi, Nguyen Dinh Ngoc, Pham Thi Thu Trang, Phung Thi Mai, Ta Hong Duc, Tran Thuong Quang, Giang Thi Phuong Ly, Dang Thanh Tung

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
Share
Funding data
-
Ministry of Science and Technology
Grant numbers ĐTĐL.CN-31/23








