Synthesis of material MOFs (Fe-BTC) by mechanic-chemical method and its application in the reactive dye degradation
DOI:
https://doi.org/10.51316/jca.2021.004Keywords:
MOFs (Fe-BTC), chemical mechanism method, photocatalytic degradationAbstract
Nano Fe-BTC materials were successfully synthesized by mechanical chemical grinding method. Samples were characterized by X-ray difraction (XRD), Fourier-transform infrared spectroscopy (FTIR), N2 adsorption–desorption, Scanning electron microscopy (SEM), Energy-dispersive X-ray spectroscopy (EDS). SEM image of Fe-BTC-60 showed the particle size of 40–60 nm. Fe-BTC nanocomposites were tested for the photocatalytic degradation of reactive yellow 145 (RY-145) in aqueous solution. Fe-BTC composites exhibited high photocatalytic activity. Thus, at pH of 3 and high initial concentration of 100 mg RY-145/L, removal efficiency reached the value of 97.45% after 90 min of reaction.
Downloads
References
Liyu Chen, Hao-Fan Wang, Caixia Li and Qiang Xu (2020) Chem. Sci, 11, 5369. https://doi.org/10.1039/D0SC01432J.
Dan W (2018) Inorg. Chem. Front., 2018,5, 1760-1779. https://doi.org/10.1039/C8QI00149A
Lan X, Huang N, Wang J, Wang T (2018). Chem Commun 54 584–587. https://doi.org/10.1039/C7CC08244D
Diring S, Furukawa S, Takashima Y et al (2010). Chem Mater 22 4531–4538. https://doi.org/10.1021/cm101778g
[5]. Majewski MB, Noh H, Islamoglu T, Farha OK (2018) J Mater Chem A 6 7338–7350, https://doi.org/10.1039/C8TA02132E
Anne Pichon, Ana Lazuen-Garay and Stuart L. James (2006) CrystEngComm, 8, 211–214 | 211. https:// 10.1039/b513750k
Heng Zhang, Jing Zhong, Guoxiang Zhou, Junliang Wu, Zhenyu Yang and Xianming Shi (2016) Journal of Nanomaterials Volume 2016 https://doi.org/10.1155/2016/9648386
Hoa T. Vu, Manh B. Nguyen, Tan M. Vu, Giang H. Le, Trang T. T. Pham, Trinh Duy Nguyen & Tuan A. Vu (2020) Topics in Catalysis. https://doi.org/10.1007/s11244-020-01289-w
Li P, Klet RC, Moon SY et al (2015) Chem Commun 51:10925–10928. https://doi.org/10.1039/C5CC03398E
Hu S, Liu M, Guo X et al (2017) Cryst Growth Des 17 6586–6595. https://doi.org/10.1021/acs.cgd.7b01250
Torres-Luna JA, Giraldo-Gómez GI, Sanabria-González NR, Carriazo JG (2019). Bull Mater Sci 42 137. https://doi.org/10.1007/s12034-019-1817-1.
[12]. Majano G, Ingold O, Yulikov M et al (2013). CrystEngComm 15 9885–9892. https://doi.org/10.1039/C3CE41366G
Vuong GT, Pham MH, Do TO (2013). CrystEngComm 15 9694–9703. https://doi.org/10.1039/C3CE41453A
Nguyen TT, Le GH, Le CH et al (2018). Mater Res Express 5 115005. https://10.1088/2053-1591/aadce1
Wang B, Liu W, Zhang W, Liu J (2017). Nano Res 10 3826–3835. https://doi.org/10.1007/s12274-017-1595-2
Pham XN, Pham DT, Ngo HS et al (2020). Chem Eng Commun. https://doi.org/10.1080/00986445.2020.1712375.