Synthesis, photophysical characterization, aggregation-induced emission effect and crystal structure of (E)-butyl-3,3'-(5,6-dicarbazolylbenzo[c][1,2,5]thiadiazolyl)acrylate
DOI:
https://doi.org/10.62239/jca.2025.060Keywords:
BINOL, BINAM, Carbazole, Benzo[2,1,3]thiadiazole, Nucleophilic Substitution, SnArAbstract
In this study, we report the development of a simple and highly efficient synthetic protocol for the preparation of novel (E)-butyl-3,3'-(5,6-dicarbazolylbenzo[c][1,2,5]thiadiazolyl)acrylate via Heck cross-coupling reactions catalyzed by palladium. Optimized conditions utilizing a Pd(OAc)2/K2CO3 system afforded high yields (70%), resulting in the successful synthesis and characterization (¹H-NMR, ¹³C-NMR) of a new compound. Detailed investigations into its photophysical properties revealed pronounced aggregation-induced emission (AIE) behavior. Single-crystal X-ray diffraction analysis provided insights into the molecular packing and structure–property relationships, while computational chemistry supported the understanding of its electronic features. This work presents a valuable contribution to the field of C–C cross-coupling chemistry, offering a practical and versatile approach for the synthesis of diverse 4,7-dialkylated-5,6-N,N-dicarbazolylbenzothiadiazole derivatives, with potential applications in medicinal chemistry and materials science.
Downloads
References
M. Dai, Y.J. Yang, S. Sarkar, K.H. Ahn, Chem. Soc. Rev., 52(18) (2023) 6344–6358. https://doi.org/10.1039/D3CS00475A
J. Wang, F. Huo, Y. Yue, C. Yin, Luminescence, 35(8) (2020) 1156–1173. https://doi.org/10.1002/bio.3831
M. Xu, X. Li, S. Liu, L. Zhang, W. Xie, Mater. Chem. Front., 7(20) (2023) 4744–4767. https://doi.org/10.1039/D3QM00585B
B.A.D. Neto, J.R. Correa, J. Spencer, Chem. Eur. J., 28(4) (2022) e202103262. https://doi.org/10.1002/chem.202103262
N.S. Gudim, S.S. Melnikov, K.Y. Shuvaev, A.Y. Sosorev, I.C. Avetissov, P.A. Stuzhin, Molecules, 26(16) (2021) 4931. https://doi.org/10.3390/molecules26164931
M. Hancharova, K. Mazur, K. Halicka, D. Zając, J. Polym. Res., 29(10) (2022) 417. https://doi.org/10.1007/s10965-022-03266-1
B.A.D. Neto, P.H.P.R. Carvalho, J.R. Correa, Acc. Chem. Res., 48(6) (2015) 1560–1569. https://doi.org/10.1021/ar500468p
A. Afrin, C.A.S. Pothulapadu, Mater. Chem. Front., (2025) 1794–1820. https://doi.org/10.1039/D5QM00238A
J. Yin, Y. Ma, G. Li, M. Peng, W. Lin, Coord. Chem. Rev., 412 (2020) 213257. https://doi.org/10.1016/j.ccr.2020.213257
Gupta, P.E. Kesavan, Front. Chem., 7 (2019) 841. https://doi.org/10.3389/fchem.2019.00841
L. Kong, T. Zhang, K. Yang, S. Cui, X. Tan, J. Mater. Sci., 53(2) (2018) 921–936. https://doi.org/10.1007/s10853-017-1570-z
H. Shi, H. Ma, W. An, Z. Lv, S. Gu, S. Wang, H. Ma, W. Tian, ACS Appl. Mater. Interfaces, 11(20) (2019) 18103–18110. https://doi.org/10.1021/acsami.9b01615
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Nguyen Van Gioi, Mai T. Phung, Phuong T. M. Ngo, Trang T. T. Pham, Duc H. Ta, Quang T. Tran, Ly P. Giang, Tung T. Dang

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
Share
Funding data
-
Ministry of Science and Technology
Grant numbers ĐTĐL.CN-31/23








