Preparation of thermal energy storage materials from bamboo polyethylene glycol and epoxy
DOI:
https://doi.org/10.62239/jca.2024.089Keywords:
Transparent, bamboo, phase change material PCM, epoxy, PEGAbstract
A Thermal Energy Storage Bamboo Plastic Composite (TESBP) was developed using bamboo,polyethylene glycol (PEG) and epoxy. The material exhibited a transmittance of 42% and 63%, indicating effective pigment processing. Fourier Transform Infrared Spectroscopy (FTIR) analysis revealed the removal of chromophore groups from the original bamboo structure, stabilize with intercalated polymers. Scanning Electron Microscopy (SEM) showed tight integration of the phase change material within the wood matrix. Thermogravimetric analysis results show that the composites of TB/epoxy and TB/PEG samples began to decompose at 325°C and 329°C, respectively. The phase transition thermal properties, evaluated through differential scanning calorimetry (DSC), revealed that the melting and solidification enthalpies were 160.2 J/g and 147.6 J/g, respectively. These characteristics highlight TESBP's potential for medium temperature range thermal energy storage, presenting a viable composite material for such applications.
Downloads
References
W. Lin, D. Chen, Q. Yong, C. Huang, S. Huang, Bioresour. Technol. 293 (2019) 122055. https://doi.org/10.1016/j.biortech.2019.122055
J.M.O. Scirlock, D.C. Dayton, B. Hames, Biomass Bioenerg. 19 (2000) 229–244. https://doi.org/10.1016/S0961-9534(00)00038-6
W. Xu, Fang X.Y., Han J.T., Wu Z.H., Zhang J.L., Wood Fiber Sci. 52 (2020) 28–43. https://doi.org/10.22382/wfs-2020-004
Song S.S., Fei B.H., Liu X.Z., Bamboo furniture processing technology and its future development. Timber Process. 29 (2012) 43–48.
Marzieh Kadivar, Christian Gauss, Khosrow Ghavami, Holmer Savastano, Jr. Materials (Basel). 13(19) (2020) 4346. https://doi.org/10.3390/ma13194346
Z. Li, Chen, C.; Mi, R.; Gan, W.; Dai, J.; Jiao, M.; Xie, H.; Yao, Y.; Xiao, S.; Hu, L. Adv. Mater. 32 (2020) 1906308. https://doi.org/10.1002/adma.201906308
M. Nazari, Jebrane M., Terziev N.; Journal of Thermal Analysis and Calorimetry, 147 (2022) 10677–10692. https://doi.org/10.1007/s10973-022-11285-9
S. Muhammad, Rafal A., Wires Energy and Environment 12 (2023) 467–491. https://doi.org/10.1002/wene.467
Fink, S. Holzforschung 46 (1992) 403–408. https://doi.org/10.1515/hfsg.1992.46.5.403
Huang S., Jiang Q., Yu B., Nie Y., Ma Z., Ma L. Polymers, 11 (2019) 1651. https://doi.org/10.3390/polym11101651
Vanholme R., Morreel K., Ralph J., Boerjan W., Curr. Opin. Plant Biol. 11 (2008) 278. https://doi.org/10.1016/j.pbi.2008.03.005
Johanné A., Stefan B., Anton F., Sustainability 15(4) (2023) 3006. https://doi.org/10.3390/su15043006
Sailing Z., Subir K. B. Zhe Q. Yijing Y. Quiliang F. , Progress in Materials Science, 132 (2023) 101025. https://doi.org/10.1016/j.pmatsci.2022.101025
Xuelian L., Weizhong Z., Jingpeng L., Xiaoyan L., Neng L., Zhenhua Z., Dapeng Z., Fei R., Yuhe C. Polymers 14 (2022) 3234. https://doi.org/10.3390/polym14163234
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Vietnam Journal of Catalysis and Adsorption
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.