Evaluating the corrosion resistance of Aluminum alloy A6063 with and without protective coatings in a simulated environment proton exchange membrane fuel cells

Authors

  • Thi Anh Tuyet Ngo Lab. of technologies for hydrogen and corrosion, Institute of materials science, Viet Nam Academy of Science and Technology, 18 Hoang Quoc Viet, Ha Noi, Viet Nam Author
  • Linh Do Chi Lab. of Technologies for Hydrogen and Corrosion, Institute of Materials Science, Viet Nam Academy of Science and Technology, 18 Hoang Quoc Viet, Ha Noi, Viet Nam Author
  • Hanh Hong Pham Lab. of Technologies for Hydrogen and Corrosion, Institute of Materials Science, Viet Nam Academy of Science and Technology, 18 Hoang Quoc Viet, Ha Noi, Viet Nam Author
  • Hoa Bui Thi Lab. of Technologies for Hydrogen and Corrosion, Institute of Materials Science, Viet Nam Academy of Science and Technology, 18 Hoang Quoc Viet, Ha Noi, Viet Nam Author
  • Thai Hong Giang Lab. of Technologies for Hydrogen and Corrosion, Institute of Materials Science, Viet Nam Academy of Science and Technology, 18 Hoang Quoc Viet, Ha Noi, Viet Nam Author
  • Lam Duc Nguyen Lab. of Technologies for Hydrogen and Corrosion, Institute of Materials Science, Viet Nam Academy of Science and Technology, 18 Hoang Quoc Viet, Ha Noi, Viet Nam Author
  • San Pham Thy Lab. of Technologies for Hydrogen and Corrosion, Institute of Materials Science, Viet Nam Academy of Science and Technology, 18 Hoang Quoc Viet, Ha Noi, Viet Nam Author

DOI:

https://doi.org/10.62239/jca.2024.067

Keywords:

Aluminum alloy A6063, Corrosion behavior, PEFCs, EIS, protective coatings

Abstract

In this study, Ni-coating and Au/Ni-coating were preparated by electroplating method at room temperature (250 C) and 450 C with various plating time on A6063 alloy substrate. The corrosion behavior of A6063 with and without protective coatings (Ni-coating and Au/Ni-coating) were evaluated in a solution simulating environment of Proton exchange membrane fuel cells (PEMFCs), 0.5 M H2SO4 and 200 ppm HF at temperatures 60 0C. Electrochemical techniques including polarization tests and impedance spectrum are used to evaluate corrosion behaviour. The surface and cross-section morphology, the chemical composition of the specimens were characterized by scanning electron microscope (SEM) and energy-dispersive X-ray (EDS) The results shown that corrosion resistance of specimens coated at room temperature was better than those coated at 450C. Aluminum alloy A6063 with protective coatings significantly improved the corrosion resistance in a simulated environment proton exchange membrane fuel. While, the corrosion current density of the Au/Ni-coating reduced by 6.4 times compared to the Ni-coating and 33.9 times compared to the A6063 without coating.

Downloads

Download data is not yet available.

References

Wei-Wei Yuan, Ou Kai, Young-Bae Kim, Appl. Therm. Eng 167 (2020) 114715. https://doi.org/10.1016/j.applthermaleng.2019.114715

F.G. Werner, L. Busemeyer, J. Kallo, S. Heitmann, M. Griebenow Werner et al,Int. J.Hydrogen Energy (2020) 1–19. https://doi.org/10.1007/S13272-014-0142-Z

Setareh Shahsavari, Andrew Desouza, Majid Bahrami, Erik Kjeang, Int. J.Hydrogen Energy 37 (2012) 18261–18271. https://doi.org/10.1016/j.ijhydene.2012.09.075

E. Middelman, W. Kout, B. Vogelaar, J. Lenssen, E. de Waal, J. Power Sources 118 (2003) 44–46. https://doi.org/10.1016/s0378-7753(03)00070-3

M. Marappan, K. Palaniswamy, T. Velumani, K. B. Chul, R. Velayutham, P. Shivakumar, S. Sundaram, Chem. Rec 21 (2021) 663–714. https://doi.org/10.1002/tcr.202000138

Magdalena Dudek, Andrzej Raźniak, Bartłomiej Lis, Michał Kawalec, Mariusz Krauz,Tadeusz Wójcik, E3S. Web. Conf 14 (2017) 01042. https://doi.org/10.1051/e3sconf/20171401042

Richard Stroman, Michael W. Schuette, Nav. Res 2010, 1–43. https://doi.org/10.21236/ada525161

J. Wu, S. Galli, I. Lagana, A. Pozio, G. Monteleone, X. Zi Yuan, J. Martin, H. Wang, J. Power Sources, 188 (2009) 199–204. https://doi.org/10.1016/j.jpowsour.2008.11.078

Chih-Yung Wen, Guo-Wei Huang, Res.Express 6 (2008) 1–8. https://doi.org/10.1016/j.jpowsour.2007.12.040

Ahn Jong-Woo and Choe, Song-Yu, J. Power Sources 179 (2008) 252–264. https://doi.org/10.1016/j.jpowsour.2007.12.066

F A. Fly , R.H. Thring, Int. J. Hydrogen Energy, 41 (2016) 14217–14229. https://doi.org/10.1016/j.ijhydene.2016.06.089

G. Zhang, S.G. Kandlikar, Int. J. Hydrogen Energy 37 (2012) 2412-2429. https://doi.org/10.1016/j.ijhydene.2011.11.010

Q. Li, Z. Liu ,Y. Sun, S. Yang, C. Deng, Processes, 9(2) (2021) 235. https://doi.org/10.3390/pr9020235

Comparini, Andrea Del Pace, Ivan Giurlani, Walter Emanuele, Roberta Verrucchi, Margherita Bonechi, Marco Innocenti, Massimo, Coatings, 13(1) (2022) 13. https://doi.org/10.3390/coatings13010013

L. Aydi, M. Khli, C. Bradai, S. Spigarelli, M. Cabibbo, M. El Mehtedi, Materials Today: Proceedings, 2(10) (2015) 4890-4897. https://doi.org/10.1016/j.matpr.2015.10.044

André Ribeiro Morais, Electroplated Ni-Al2O3 nanocomposite coatings on aluminium alloys. Master’s degree dissertation of metalurgical and material engineering at Faculty of Engineering of University of Porto (2022).

Hue N.V, Phong N.N, Tuyet N.T.A, Met Mater Int, 12(6) (2006) 493-496. https://doi.org/10.1007/BF03027749

Hue N.V, Tuyet N.T.A, Hanh P.H, Phong N.N, Trans. Nonferrous Met. Soc. China, 23 (2013) 2348–2353. https://doi.org/10.1016/S1003-6326(13)62740-5

Rautio T, Hamidreza T, Tarek A, Antti J, Atef H, Mater. Res. Technol, 17 (2022), 521–536. https://doi.org/10.1016/j.jmrt.2022.01.022

Published

30-12-2024

Issue

Section

Full Articles

How to Cite

Evaluating the corrosion resistance of Aluminum alloy A6063 with and without protective coatings in a simulated environment proton exchange membrane fuel cells. (2024). Vietnam Journal of Catalysis and Adsorption, 13(4), 14-19. https://doi.org/10.62239/jca.2024.067

Share

Funding data

Similar Articles

1-10 of 36

You may also start an advanced similarity search for this article.