Shape-stable composite of synthetic phase change materials from balsa wood by epoxy/PEG through alkaline method

Authors

  • Tho Le Duc Faculty of Petroleum and Energy, Hanoi University of Mining and Geology, 18 PhoVien, Hanoi Author
  • Le Thi Duyen Faculty of Petroleum and Energy, Hanoi University of Mining and Geology, 18 PhoVien, Hanoi Author
  • Nguyen Thi Huong Ly Faculty of Petroleum and Energy, Hanoi University of Mining and Geology, 18 PhoVien, Hanoi Author
  • Nguyen Van Teo Faculty of Petroleum and Energy, Hanoi University of Mining and Geology, 18 PhoVien, Hanoi Author
  • Nguyen Thi Thanh Bao Institute of Physics, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi Author
  • Tong Thi Thanh Huong Faculty of Petroleum and Energy, Hanoi University of Mining and Geology, 18 PhoVien, Hanoi Author

DOI:

https://doi.org/10.62239/jca.2024.058

Keywords:

PEG, Phase Change Material , PCM, energy storage, Polyethylene Glycol

Abstract

Phase change materials have excellent thermal energy storage capacity, making them an appealing option for energy management applications. Stabilizing the form of phase change materials enhances their practical effectiveness. This research focuses on sustaining the shape of low molecular weight PEG phase change materials in wood structures made from natural balsa wood. The alkalization process is used to modify the wood, after which the PEG/epoxy polymers are infused into the wood structure to form a synthetic phase change material. The process of treating wood with alkali involves partially removing lignin from the wood, creating specific spaces. Results from optical transmittance analysis demonstrate that wood treated with alkali and wood infused with phase change polymer exhibit high optical transmittance. SEM images also illustrate the presence of spaces in delignified wood treated with Epoxy/PEG 400 and Epoxy/PEG 600. The synthetic phase change material remains stable at temperatures below 310°C and possesses a ∆Hc of 170.1J/g to 162.8 J/g. The phase transition temperatures during heating are 56.4°C and 57.2°C, cooling is 25.7°C and 30.1°C.

Downloads

Download data is not yet available.

References

Zhu, H.; Luo, W.; Ciesielski, P. N.; Fang, Z.; Zhu, J. Y.; Henriksson, G.; Himmel, M. E.; Hu, L. Chem. Rev. 116, (2016), 9305−9374. https://doi.org/10.1021/acs.chemrev.6b00225

Spear, M. J. Curling S.F., Dimitriou A., Ormondroyd G. A., Coatings 11, (2011) 327; https://doi.org/10.3390/coatings11030327

Chaoji C., Hu L., Adv. Mater. 2020, 2002890, https://doi.org/10.1002/adma.202002890

Yousefi, H., Azari, V., & Khazaeian, A., Industrial Crops & Products, 115, (2018), 26–31. https://doi.org/10.1016/j.indcrop.2018.02.020

Jeong G. S., Cha J., Kim S., Seo J., Lee J. H., Kim S., Journal of Thermal Analysis and Calorimetry, 117, (2014), 1027–1034. DOI: http://dx.doi.org/10.1007/s10973-014-3862-8

Karaipekli A., Biçer A., Sari A. Tyagi V., Energy Conversion and Management, 134, (2017), https://doi.org/10.1016/j.enconman.2016.12.053

P. Sivasamy P., Muthiah A., Sundarrajan D., Kanagasabapathy H., Durkaieswaran P., Jegan B., Engineering Headway Vol. 5, (2024), 3-11. https://doi.org/10.4028/p-05Sy5d

Li W., Xu L., Wang X., Zhu R., Yan Y., Polymer Basel, 14 (1), (2022), 53. https://doi.org/10.3390/polym14010053

Zhang W., Pan L., Ding D., Zhang R., Bai J., Di Q., ACS Omega 8, 25, (2023), 22331–22344. https://doi.org/10.1021/acsomega.3c01430

Podara V. C, Kartsonakis A. I., Charitidis C. A., Appl. Sci. 11(4), (2021), 1490. https://doi.org/10.3390/app11041490

Li Y., Jia Y., Wang K., Guo J., Guo H., Materials Today Sustainability, Volume 27, (2024), 100890, https://doi.org/10.1016/j.mtsust.2024.100890

Leibnitz O., Dreimol H. C., Stucki S., Sanz-Pont D., Keplinger T., Burgert I., Ding Y., Next Materials, 2, (2024), 100132, https://doi.org/10.1016/j.nxmate.2024.100132

Mehriz A. A., Karimi-Maleh H., Naddafi M., Karimi F., J. Energy Storage 61 (2023) 23, https://doi.org/10.1016/j.est.2023.106859

Guo H. R., Shan B. L., Wu Y. H., Cai M. Y., Huang R., Ma H., Tang C. K., Liu K., Mater. Today Energy, 23, (2021), 100888, https://doi.org/10.1016/j.mtener.2021.100888

Mirhal K. D., Bhowmik S., Pandey M. K., J. Phys.: Conf. Ser. 1455, (2020), 012025, https://doi.org/10.1088/1742-6596/1455/1/012025

Li. Y., Fu Q., Yang X., Berglund L. A. Phil. Trans. A., Vol. 376, (2018), 20170182. https://doi.org/10.1098/rsta.2017.0182

Published

30-09-2024

Issue

Section

GSCE2024

How to Cite

Shape-stable composite of synthetic phase change materials from balsa wood by epoxy/PEG through alkaline method. (2024). Vietnam Journal of Catalysis and Adsorption, 13(3), 54-59. https://doi.org/10.62239/jca.2024.058

Share

Similar Articles

1-10 of 257

You may also start an advanced similarity search for this article.