Shape-stable composite of synthetic phase change materials from balsa wood by epoxy/PEG through alkaline method
DOI:
https://doi.org/10.62239/jca.2024.058Keywords:
PEG, Phase Change Material , PCM, energy storage, Polyethylene GlycolAbstract
Phase change materials have excellent thermal energy storage capacity, making them an appealing option for energy management applications. Stabilizing the form of phase change materials enhances their practical effectiveness. This research focuses on sustaining the shape of low molecular weight PEG phase change materials in wood structures made from natural balsa wood. The alkalization process is used to modify the wood, after which the PEG/epoxy polymers are infused into the wood structure to form a synthetic phase change material. The process of treating wood with alkali involves partially removing lignin from the wood, creating specific spaces. Results from optical transmittance analysis demonstrate that wood treated with alkali and wood infused with phase change polymer exhibit high optical transmittance. SEM images also illustrate the presence of spaces in delignified wood treated with Epoxy/PEG 400 and Epoxy/PEG 600. The synthetic phase change material remains stable at temperatures below 310°C and possesses a ∆Hc of 170.1J/g to 162.8 J/g. The phase transition temperatures during heating are 56.4°C and 57.2°C, cooling is 25.7°C and 30.1°C.
Downloads
References
Zhu, H.; Luo, W.; Ciesielski, P. N.; Fang, Z.; Zhu, J. Y.; Henriksson, G.; Himmel, M. E.; Hu, L. Chem. Rev. 116, (2016), 9305−9374. https://doi.org/10.1021/acs.chemrev.6b00225
Spear, M. J. Curling S.F., Dimitriou A., Ormondroyd G. A., Coatings 11, (2011) 327; https://doi.org/10.3390/coatings11030327
Chaoji C., Hu L., Adv. Mater. 2020, 2002890, https://doi.org/10.1002/adma.202002890
Yousefi, H., Azari, V., & Khazaeian, A., Industrial Crops & Products, 115, (2018), 26–31. https://doi.org/10.1016/j.indcrop.2018.02.020
Jeong G. S., Cha J., Kim S., Seo J., Lee J. H., Kim S., Journal of Thermal Analysis and Calorimetry, 117, (2014), 1027–1034. DOI: http://dx.doi.org/10.1007/s10973-014-3862-8
Karaipekli A., Biçer A., Sari A. Tyagi V., Energy Conversion and Management, 134, (2017), https://doi.org/10.1016/j.enconman.2016.12.053
P. Sivasamy P., Muthiah A., Sundarrajan D., Kanagasabapathy H., Durkaieswaran P., Jegan B., Engineering Headway Vol. 5, (2024), 3-11. https://doi.org/10.4028/p-05Sy5d
Li W., Xu L., Wang X., Zhu R., Yan Y., Polymer Basel, 14 (1), (2022), 53. https://doi.org/10.3390/polym14010053
Zhang W., Pan L., Ding D., Zhang R., Bai J., Di Q., ACS Omega 8, 25, (2023), 22331–22344. https://doi.org/10.1021/acsomega.3c01430
Podara V. C, Kartsonakis A. I., Charitidis C. A., Appl. Sci. 11(4), (2021), 1490. https://doi.org/10.3390/app11041490
Li Y., Jia Y., Wang K., Guo J., Guo H., Materials Today Sustainability, Volume 27, (2024), 100890, https://doi.org/10.1016/j.mtsust.2024.100890
Leibnitz O., Dreimol H. C., Stucki S., Sanz-Pont D., Keplinger T., Burgert I., Ding Y., Next Materials, 2, (2024), 100132, https://doi.org/10.1016/j.nxmate.2024.100132
Mehriz A. A., Karimi-Maleh H., Naddafi M., Karimi F., J. Energy Storage 61 (2023) 23, https://doi.org/10.1016/j.est.2023.106859
Guo H. R., Shan B. L., Wu Y. H., Cai M. Y., Huang R., Ma H., Tang C. K., Liu K., Mater. Today Energy, 23, (2021), 100888, https://doi.org/10.1016/j.mtener.2021.100888
Mirhal K. D., Bhowmik S., Pandey M. K., J. Phys.: Conf. Ser. 1455, (2020), 012025, https://doi.org/10.1088/1742-6596/1455/1/012025
Li. Y., Fu Q., Yang X., Berglund L. A. Phil. Trans. A., Vol. 376, (2018), 20170182. https://doi.org/10.1098/rsta.2017.0182
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Vietnam Journal of Catalysis and Adsorption
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.