Oxidation of benzyl alcohol catalyzed by ligand-stabilized Au nanoparticles in the presence of weak bases

Authors

  • Thanh Khoa Phung School of Biotechnology, International University, Ho Chi Minh City, Vietnam | Vietnam National University, Ho Chi Minh City, Vietnam Author
  • Thao T. T. Tran Faculty of Chemical Technology, Ho Chi Minh city University of Food Industry, Vietnam Author
  • Ngo Thanh An Faculty of Chemical Technology, Ho Chi Minh city University of Food Industry, Vietnam Author
  • Khanh B. Vu School of Biotechnology, International University, Ho Chi Minh City, Vietnam | Vietnam National University, Ho Chi Minh City, Vietnam Author

DOI:

https://doi.org/10.51316/jca.2022.043

Keywords:

CTAB-gold, citrate-gold, THPC-gold, catalytic oxidation, gold nanoparticles

Abstract

Ligand-stabilized gold nanoparticles (tetrakis(hydroxymethyl)phosphonium chloride-Au, citrate-Au, cetrimonium bromide-Au) were synthesized and mixed with several weak-base solids (barium carbonate, Amberlite IRA-900) and acidic solid  (Dowex 50WX2 resin). Those catalysts were applied for the oxidation of benzyl alcohol in water at 80 oC. Almost ligand-stabilized Au nanoparticles/weak-base solids showed good conversion of benzyl alcohol and high selectivity of benzoic acid, whereas ligand-stabilized Au nanoparticles/acidic solid were catalytically inactive. Nanoparticles were characterized by transmission electron microscopy, zetapotential measurement, and dynamic light scattering. The catalytic activity and product selectivity were determined by using a gas chromatography coupled with a mass selective detector. Our study suggests that the oxidation reaction in water could be catalyzed by gold with the presence of weak-base solids.

Downloads

Download data is not yet available.

References

G.C. Bond, P.A. Sermon, G. Webb, D.A. Buchanan, P.B. Wells, Journal of the Chemical Society, Chemical Communications (1973) 444b. https://doi.org/ 10.1039/C3973000444B

G.J. Hutchings, Journal of Catalysis 96 (1985) 292. https://doi.org/10.1016/0021-9517(85)90383-5

M. Haruta, N. Yamada, T. Kobayashi, S. Iijima, Journal of Catalysis 115 (1989) 301. https://doi.org/10.1016/0021-9517(89)90034-1

A.S.K. Hashmi, G.J. Hutchings, Angewandte Chemie International Edition 45 (2006) 7896. https://doi.org/10.1002/anie.200602454

T. Mallat, A. Baiker, Annual review of chemical and biomolecular engineering 3 (2012) 11. https://doi.org/10.1146/annurev-chembioeng-062011-081046

H.D. Duong, T. Vo-Dinh, J.I. Rhee, Journal of Industrial and Engineering Chemistry 69 (2019) 233. https://doi.org/10.1016/j.jiec.2018.09.034

P. Yang, Y. Liu, Journal of Industrial and Engineering Chemistry 53 (2017) 317. https://doi.org/10.1016/j.jiec.2017.05.002

K. Yang, C. Liu, Journal of Industrial and Engineering Chemistry 28 (2015) 161. https://doi.org/10.1016/j.jiec.2015.01.026

D.K. Mishra, J.K. Cho, Y. Yi, H.J. Lee, Y.J. Kim, Journal of Industrial and Engineering Chemistry 70 (2019) 338. https://doi.org/10.1016/j.jiec.2018.10.034

S. Kang, K.S. Yoo, Y. Chung, Y. Kwon, Journal of Industrial and Engineering Chemistry 62 (2018) 329. https://doi.org/10.1016/j.jiec.2018.01.011

S.E. Davis, M.S. Ide, R.J. Davis, Green Chemistry 15 (2013) 17. https://doi.org/10.1039/C2GC36441G

A. Corma, H. Garcia, Chemical Society Reviews 37 (2008) 2096. https://doi.org/10.1039/B707314N

T. Mallat, A. Baiker, Chemical Reviews 104 (2004) 3037. https://doi.org/10.1021/cr0200116

H. Guo, A. Al-Hunaiti, M. Kemell, S. Rautiainen, M. Leskelä, T. Repo, ChemCatChem 3 (2011) 1872. https://doi.org/10.1002/cctc.201100286

Y. Yuan, N. Yan, P.J. Dyson, Inorganic Chemistry 50 (2011) 11069. https://doi.org/10.1021/ic201608j

H. Tsunoyama, H. Sakurai, Y. Negishi, T. Tsukuda, Journal of the American Chemical Society 127 (2005) 9374. https://doi.org/10.1021/ja052161e

C.P. Ferraz, M.A.S. Garcia, É. Teixeira-Neto, L.M. Rossi, RSC Advances 6 (2016) 25279. https://doi.org/10.1039/C6RA01795A

P.J. Miedziak, H. Alshammari, S.A. Kondrat, T.J. Clarke, T.E. Davies, M. Morad, D.J. Morgan, D.J. Willock, D.W. Knight, S.H. Taylor, G.J. Hutchings, Green Chemistry 16 (2014) 3132. https://doi.org/10.1039/C4GC00087K

V.V. Costa, M. Estrada, Y. Demidova, I. Prosvirin, V. Kriventsov, R.F. Cotta, S. Fuentes, A. Simakov, E.V. Gusevskaya, Journal of Catalysis 292 (2012) 148. http://dx.doi.org/10.1016/j.jcat.2012.05.009

B. Vilhanová, J. Václavík, L. Artiglia, M. Ranocchiari, A. Togni, J.A. van Bokhoven, ACS Catalysis 7 (2017) 3414.

https://doi.org/10.1021/acscatal.7b00691

T. Pham, J.B. Jackson, N.J. Halas, T.R. Lee, Langmuir 18 (2002) 4915. https://doi.org/10.1021/la015561y

B.V. Enustun, J. Turkevich, Journal of the American Chemical Society 85 (1963) 3317. https://doi.org/10.1021/ja00904a001

K.B. Vu, L.G. Bach, T. Van Tran, N.T. Thuong, H.N. Giang, Q.T.P. Bui, S.T. Ngo, Chemical Physics Letters 728 (2019) 80. https://doi.org/10.1016/j.cplett.2019.04.082

C.-C. Li, J.-H. Jean, Journal of the American Ceramic Society 85 (2002) 2977. https://10.1111/j.1151-2916.2002.tb00566.x

D.W. Fuerstenau, Pradip, R. Herrera-Urbina, Colloids and Surfaces 68 (1992) 95. https://doi.org/10.1016/0166-6622(92)80150-Z

C.Y. Tai, C.-t. Tai, H.-s. Liu, Chemical Engineering Science 61 (2006) 7479. https://doi.org/10.1016/j.ces.2006.08.065

D.G. Duff, A. Baiker, P.P. Edwards, Langmuir 9 (1993) 2301. https://doi.org/10.1021/la00033a010

C.P. Gulka, A.C. Wong, D.W. Wright, Chemical Communications 52 (2016) 1266. https://doi.org/10.1039/C5CC08211K

M.R. Ivanov, H.R. Bednar, A.J. Haes, ACS Nano 3 (2009) 386. https://doi.org/10.1021/nn8005619

A.M. Alkilany, S.R. Abulateefeh, K.K. Mills, A.I. Bani Yaseen, M.A. Hamaly, H.S. Alkhatib, K.M. Aiedeh, J.W. Stone, Langmuir 30 (2014) 13799. https://doi.org/10.1021/la504000v

J. Guo, M.J. Armstrong, C.M. O'Driscoll, J.D. Holmes, K. Rahme, RSC Advances 5 (2015) 17862. https://doi.org/10.1039/C4RA16294C

B. Nikoobakht, M.A. El-Sayed, Langmuir 17 (2001) 6368. https://doi.org/10.1021/la010530o

H. Wang, Y. Shi, M. Haruta, J. Huang, Applied Catalysis A: General 536 (2017) 27. https://doi.org/10.1016/j.apcata.2017.02.015

Lide, D. R., CRC handbook of chemistry and physics: a ready-reference book of chemical and physical data. CRC press 2004, 2, 2. https://doi.org/10.1021/ja0336372

H. Stephen, T. Stephen, Binary Systems: Solubilities of Inorganic and Organic Compounds, Volume 1P1, Elsevier, 2013.

S. Wang, Q. Zhao, H. Wei, J.-Q. Wang, M. Cho, H.S. Cho, O. Terasaki, Y. Wan, Journal of the American Chemical Society 135 (2013) 11849. https://doi.org/10.1021/ja403822d

Y. Liu, H. Tsunoyama, T. Akita, T. Tsukuda, The Journal of Physical Chemistry C 113 (2009) 13457. https://doi.org/10.1021/jp904700p

Y. Liu, H. Tsunoyama, T. Akita, T. Tsukuda, Chemistry letters 39 (2010) 159. https://doi.org/10.1246/cl.2010.159

M.J. Ndolomingo, R. Meijboom, Applied Surface Science 398 (2017) 19. https://doi.org/10.1016/j.apsusc.2016.12.020

P. Miedziak, M. Sankar, N. Dimitratos, J.A. Lopez-Sanchez, A.F. Carley, D.W. Knight, S.H. Taylor, C.J. Kiely, G.J. Hutchings, Catalysis Today 164 (2011) 315. https://doi.org/10.1016/j.cattod.2010.10.028

V.R. Choudhary, D.K. Dumbre, Applied Catalysis A: General 375 (2010) 252. https://doi.org/10.1016/j.apcata.2010.01.007

D.I. Enache, D. Barker, J.K. Edwards, S.H. Taylor, D.W. Knight, A.F. Carley, G.J. Hutchings, Catalysis Today 122 (2007) 407. https://doi.org/10.1016/j.cattod.2007.01.003

N. Dimitratos, J.A. Lopez-Sanchez, D. Morgan, A. Carley, L. Prati, G.J. Hutchings, Catalysis Today 122 (2007) 317. https://doi.org/10.1016/j.cattod.2007.01.002

M. Kokate, S. Dapurkar, K. Garadkar, A. Gole, The Journal of Physical Chemistry C 119 (2015) 14214. https://doi.org/10.1021/acs.jpcc.5b03077

V.R. Choudhary, D.K. Dumbre, S.K. Bhargava, Industrial & Engineering Chemistry Research 48 (2009) 9471. https://doi.org/10.1021/ie801883d

H. Liu, Y. Liu, Y. Li, Z. Tang, H. Jiang, The Journal of Physical Chemistry C 114 (2010) 13362. https://doi.org/10.1021/jp105666f

M. Alhumaimess, Z. Lin, Q. He, L. Lu, N. Dimitratos, N.F. Dummer, M. Conte, S.H. Taylor, J.K. Bartley, C.J. Kiely, G.J. Hutchings, Chemistry – A European Journal 20 (2014) 1701. https://doi.org/10.1002/chem.201303355

A. Abad, A. Corma, H. García, Chemistry – A European Journal 14 (2008) 212. https://doi.org/10.1002/chem.200701263

S.K. Klitgaard, A.T.D. Riva, S. Helveg, R.M. Werchmeister, C.H. Christensen, Catalysis letters 126 (2008) 213. https://doi.org/10.1007/s10562-008-9688-x

E. Skupien, R.J. Berger, V.P. Santos, J. Gascon, M. Makkee, M.T. Kreutzer, P.J. Kooyman, J.A. Moulijn, F. Kapteijn, Catalysts 4 (2014) 89. https://doi.org/10.3390/catal4020089

N. Kanazawa, K. Urano, N. Kokado, Y. Urushigawa, Journal of Colloid and Interface Science 238 (2001) 196. https://doi.org/10.1006/jcis.2001.7511

Published

30-10-2022

Issue

Section

Full Articles

How to Cite

Oxidation of benzyl alcohol catalyzed by ligand-stabilized Au nanoparticles in the presence of weak bases. (2022). Vietnam Journal of Catalysis and Adsorption, 11(3), 13-21. https://doi.org/10.51316/jca.2022.043

Share

Funding data

Most read articles by the same author(s)

Similar Articles

1-10 of 170

You may also start an advanced similarity search for this article.