Synthesis, characterization, and photocatalytic application of V/ZnO-ZrO2

Authors

  • Pham Thi Minh Thao Hanoi National University of Education Author
  • Do Thi Huong Hanoi National University of Education Author
  • Le Thi Hong Hai Hanoi National University of Education Author

DOI:

https://doi.org/10.51316/jca.2022.036

Keywords:

ZnO, ZrO2, Vanadi, nanocomposite, photocatalytic activity, phenol, degradation

Abstract

In this work we report the synthesis of ZnO-ZrO2 and vanadium doped  ZnO-ZrO2 (V/ZnO-ZrO2) nanocomposite materials by a sol–gel processing technique. The molar ratio between ZnO and ZrO2 is 3 : 4, the molar percentage of vanadium doped (relative to ZrO2) varies from 3% to 9%. The obtained materials were characterized by XRD, SEM, UV-Vis, BET, EDX. XRD data identified phase of the ZnO and phase of ZrO2 in all obtained samples. The average crystallite size of the samples was between 18 to 20 nm. UV-Vis spectra showed that the band gap energy decreased by the doping of Vanadium. The EDX result of ZZV347S indicated doping efficiency equal 91,29%. The photocatalytic activities of nanocompsite materials were evaluated by the photocatalytic degradation of phenol under UV light. The highest photocatalytic efficiency for phenol degradation was achieved through ZZV343S catalyst after 180 minutes.

Downloads

Download data is not yet available.

References

M. C. Uribe López, M. A. Alvarez Lemus , M. C. Hidalgo, R. López González ,P. Quintana Owen, S. Oros-Ruiz, S. A. Uribe López, and J. Acosta. Journal of Nanomaterials Volume 2019, Article ID 1015876, 12 pages. https://doi.org/10.1155/2019/1015876

E.D. Sherly, J. Judith Vijaya, N. Clament Sagaya Selvam, L. John Kennedy. Ceramics International 40 (2014) 5681–5691. https://doi.org/10.1016/j.ceramint.2013.11.006

Shokufeh Aghabeygi and Mostafa Khademi Shamami.. Ultrasonics Sonochemistry (2017). https://dx.doi.org/10.1016/j.ultsonch.2017.09.020

Olga Długosz, Krzysztof Szostak, Marcin Banach. Applied Nanoscience 10 (2020) 941–954. https://doi.org/10.1007/s13204-019-01158-3

R. Slama, J. El Ghoul, I. Ghiloufi, K. Omri, L. El Mir, A. Houas. J Mater Sci: Mater Electron (2016). https://doi.org/10.1007/s10854-016-4817-6

Mohammed Ahmed Wahba, Saad Mabrouk Yakout. Journal of Sol-Gel Science and Technology (2019). https://doi.org/10.1007/s10971-019-05103-2

R. Slama, F. Ghribi, A. Houas, C. Barthou, L. El Mir. Thin Solid Films 519 17 (2011 5792-5795. https://doi.org/10.1016/j.tsf.2010.12.197

Khalid Saeed, Mohammad Sadiq, Idrees Khan, Saleem Ullah, Nauman Ali, Adnan Khan. Applied Water Scie 8 (2018)60. https://doi.org/10.1007/s13201-018-0709-7

C Karunakaran, R Dhanalakshmi, P Gomathisankar. Spectrochim Acta A Mol Biomol Spectrosc92 (2012)201-6. https://doi.org/10.1016/j.saa.2012.02.040.

Xiaoqing Chen, Zhansheng Wu*, Dandan Liu and Zhenzhen Gao.. Chen et al. Nanoscale Research Letters 12 (2017)143. https://doi.org/10.1186/s11671-017-1904-4

Phạm Thị Minh Thảo, Đỗ Thị Hương, Lê Thị Hồng Hải. Tạp chí xúc tác và hấp phụ (2021). https://doi.org/10.51316/jca.2021.050

Phạm Thị Minh Thảo, Lê Thị Hải Yến, Lê Thị Hồng Hải. Tạp chí xúc tác và hấp phụ, 9 3 (2020) 101-106.

Nguyễn Tiến Bình, Ngô Kim Chi, Phạm Thị Minh Thảo, Lê Thị Hồng Hải, Tạp chí Khoa học và Công nghệ 50 2B (2012) 17-22

Published

30-07-2022

Issue

Section

Full Articles

How to Cite

Synthesis, characterization, and photocatalytic application of V/ZnO-ZrO2. (2022). Vietnam Journal of Catalysis and Adsorption, 11(2), 103-108. https://doi.org/10.51316/jca.2022.036

Share

Funding data

Similar Articles

1-10 of 208

You may also start an advanced similarity search for this article.