Adsorption of methylene blue from aqueous solution by biochar prepared from jackfruit peel: isotherm model studies

Authors

  • Loc Ton-That Future Materials & Devices Laboratory, Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City, Viet Nam. Author
  • Hoang-Dung Pham Can Tho Department of Science and Technology, Can Tho City, Viet Nam Author
  • Thi-Ngoc-Linh Huynh Can Tho Department of Science and Technology, Can Tho City, Viet Nam Author
  • Bich-Ngoc Duong Southern Institute of Ecology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Viet Nam. Dong Nai University, 4 Le Quy Don Street, Dong Nai province, Vietnam Author
  • Thi-Thuy Luu Future Materials & Devices Laboratory, Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City, Viet Nam. Author
  • Duy-Khoi Nguyen Future Materials & Devices Laboratory, Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City, Viet Nam. Author
  • Ngoc-An Nguyen Graduate University of Science and Technology, VAST, TL29, Thanh Loc Ward, Dist. 12, Ho Chi Minh City, Vietnam Author
  • Thien-Hoang Ho Dong Nai University, 4 Le Quy Don Street, Dong Nai province, Vietnam Author
  • Van-Hien Pham Institute of Applied Materials Science, VAST, TL29, Thanh Loc Ward, Dist. 12, Ho Chi Minh City, Vietnam. Graduate University of Science and Technology, VAST, TL29, Thanh Loc Ward, Dist. 12, Ho Chi Minh City, Vietnam Author
  • Van-Phuc Dinh Future Materials & Devices Laboratory, Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City, Viet Nam. Author

DOI:

https://doi.org/10.51316/jca.2023.001

Keywords:

Isotherm models, adsorption, biochar, Jackfruit peel, dye treatment

Abstract

In this study, biochar derived from Jackfruit peel (JA) via the pyrolysis at 500 °C for 2 h was used as an adsorbent to remove Methylene Blue (MB) from aqueous solution. Effects of pH, contact time, and initial MB concentration were investigated. Isotherm models, such as Langmuir, Freundlich, Sips, and Dubinin-Radushkevich, were applied to estimate the adsorption in nature. The results indicated that the Sips and Freundlich models gave the best fit with experimental datas. The maximum adsorption capacity of MB calculated from Langmuir was 39.87 mg/g at 306K, pH = 11, and time = 60 min. The E value evaluated from Dubinin-Radushkevich smaller than 8 kJ/mol indicated that the MB adsorption of JA followed a physical process.

Downloads

Download data is not yet available.

References

N.T.H.P. Tran Dinh Trinh, VNU Journal of Science: Natural Sciences and Technology 36 (2020). https://10.25073/2588-1140/vnunst.4939

F.E. Titchou, R.A. Akbour, A. Assabbane, M. Hamdani, Groundwater for Sustainable Development 11 (2020). https://10.1016/j.gsd.2020.100405

D. Sun, N. Iqbal, W. Liao, Y. Lu, X. He, K. Wang, B. Ma, Y. Zhu, K. Sun, Z. Sun, T. Li, Ceramics International (2022). https://doi.org/10.1016/j.ceramint.2022.05.225

E.F.D. Januario, T.B. Vidovix, N.C.L. Beluci, R.M. Paixao, L. Silva, N.C. Homem, R. Bergamasco, A.M.S. Vieira, Sci Total Environ 789 (2021) 147957. https://10.1016/j.scitotenv.2021.147957

Z. Li, B. Xing, Y. Ding, Y. Li, S. Wang, Chinese Journal of Chemical Engineering 28 (2020) 2872. https://10.1016/j.cjche.2020.03.031

H. Zhang, Y. Li, B. Cheng, C. Ding, Y. Zhang, Int J Biol Macromol 161 (2020) 561. https://10.1016/j.ijbiomac.2020.06.017

S. Zhi, L. Tian, N. Li, K. Zhang, J Environ Manage 213 (2018) 392. https://10.1016/j.jenvman.2018.02.082

M. Daud, A. Hai, F. Banat, M.B. Wazir, M. Habib, G. Bharath, M.A. Al-Harthi, Journal of Molecular Liquids 288 (2019). https://10.1016/j.molliq.2019.110989

M. Shafiq, A.A. Alazba, M.T. Amin, Arabian Journal of Geosciences 12 (2019). https://10.1007/s12517-018-4186-y

C. Nuanhchamnong, K. Kositkanawuth, N. Wantaneeyakul, Results in Engineering 14 (2022). https://10.1016/j.rineng.2022.100451

D. Congsomjit, C. Areeprasert, Biomass Conversion and Biorefinery (2020). https://10.1007/s13399-020-00635-y

M.A. Ahmad, M.A. Eusoff, K.A. Adegoke, O.S. Bello, Environmental Technology & Innovation 24 (2021). https://10.1016/j.eti.2021.101917

D. Cheng, H.H. Ngo, W. Guo, S.W. Chang, D.D. Nguyen, X. Zhang, S. Varjani, Y. Liu, Sci Total Environ 720 (2020) 137662. https://10.1016/j.scitotenv.2020.137662

R.A.S.N. Ranasinghe, S.D.T. Maduwanthi, R.A.U.J. Marapana, International Journal of Food Science 2019 (2019) 4327183. https://10.1155/2019/4327183

V. Puccia, M.J. Avena, Colloid and Interface Science Communications 41 (2021). https://10.1016/j.colcom.2021.100376

P. Ganguly, R. Sarkhel, P. Das, Surfaces and Interfaces 20 (2020). https://10.1016/j.surfin.2020.100616

A. Poursaeidesfahani, E. Andres-Garcia, M. de Lange, A. Torres-Knoop, M. Rigutto, N. Nair, F. Kapteijn, J. Gascon, D. Dubbeldam, T.J.H. Vlugt, Microporous and Mesoporous Materials 277 (2019) 237. https://doi.org/10.1016/j.micromeso.2018.10.037

V.P. Dinh, T.D. Huynh, H.M. Le, V.D. Nguyen, V.A. Dao, N.Q. Hung, L.A. Tuyen, S. Lee, J. Yi, T.D. Nguyen, L.V. Tan, RSC Adv 9 (2019) 25847. https://10.1039/c9ra04296b

V.-P. Dinh, D.-K. Nguyen, T.-T. Luu, Q.-H. Nguyen, L.A. Tuyen, D.D. Phong, H.A.T. Kiet, T.-H. Ho, T.T.P. Nguyen, T.D. Xuan, P.T. Hue, N.T.N. Hue, Materials Chemistry and Physics 285 (2022). https://10.1016/j.matchemphys.2022.126105

Y. Liu, X. Zhao, J. Li, D. Ma, R. Han, Desalination and Water Treatment 46 (2012) 115. https://10.1080/19443994.2012.677408

L.M. Ferreira, R.R. de Melo, A.S. Pimenta, T.K.B. de Azevedo, C.B. de Souza, Biomass Conversion and Biorefinery 12 (2020) 1181. https://10.1007/s13399-020-00660-x

K.V. Kumar, S. Gadipelli, B. Wood, K.A. Ramisetty, A.A. Stewart, C.A. Howard, D.J.L. Brett, F. Rodriguez-Reinoso, Journal of Materials Chemistry A 7 (2019) https://10104.10.1039/c9ta00287a

S.B. Daffalla, H. Mukhtar, M.S. Shaharun, PLoS One 15 (2020) e0243540. https://10.1371/journal.pone.0243540

H.A.T. Banu, P. Karthikeyan, S. Meenakshi, Bioresource Technology Reports 8 (2019). https://10.1016/j.biteb.2019.100331

M.T. Amin, A.A. Alazba, M. Shafiq, Environ Monit Assess 191 (2019) 735. https://10.1007/s10661-019-7915-0

S. Fan, Y. Wang, Z. Wang, J. Tang, J. Tang, X. Li, Journal of Environmental Chemical Engineering 5 (2017) 601. https://10.1016/j.jece.2016.12.019

K.W. Jung, B.H. Choi, M.J. Hwang, T.U. Jeong, K.H. Ahn, Bioresour Technol 219 (2016) 185. https://10.1016/j.biortech.2016.07.098

Y. Mu, H. Ma, Chemical Engineering Research and Design 167 (2021) 129. https://10.1016/j.cherd.2021.01.008

J.-C. Lee, H.-J. Kim, H.-W. Kim, H. Lim, Journal of Industrial and Engineering Chemistry 98 (2021) 383. https://10.1016/j.jiec.2021.03.026

X. Tang, G. Ran, J. Li, Z. Zhang, C. Xiang, J Hazard Mater 402 (2021) 123579. https://10.1016/j.jhazmat.2020.123579

A. Subratti, J.L. Vidal, L.J. Lalgee, F.M. Kerton, N.K. Jalsa, Sustainable Chemistry and Pharmacy 21 (2021). https://10.1016/j.scp.2021.100421

C.H. Giles, D. Smith, A. Huitson, Journal of Colloid and Interface Science 47 (1974) 755. https://doi.org/10.1016/0021-9797(74)90252-5

M.A. Ahmad, M.A. Eusoff, P.O. Oladoye, K.A. Adegoke, O.S. Bello, Chemical Data Collections 32 (2021). https://10.1016/j.cdc.2021.100676

Published

30-03-2023

Issue

Section

Full Articles

How to Cite

Adsorption of methylene blue from aqueous solution by biochar prepared from jackfruit peel: isotherm model studies. (2023). Vietnam Journal of Catalysis and Adsorption, 12(1), 1-7. https://doi.org/10.51316/jca.2023.001

Share

Similar Articles

1-10 of 209

You may also start an advanced similarity search for this article.