Study on the removal of Rhodamine B of Iron(III)-dicarboxylic framework/graphene nanoplatelets composites
DOI:
https://doi.org/10.51316/jca.2023.048Keywords:
MOFs, GNPs, isotherm, kineticsAbstract
In this study, Iron(III)-dicarboxylic framework/graphene nanoplatelets (Fe-BDC/GNPs) composites were synthesized by the ultrasonic method in a water/ethanol mixture solvent. As-prepared composite materials were characterized by XRD, SEM, BET, and laser light scattering techniques. The sorption behaviors of Rhodamine B by the prepared material were studied. The results showed that the material could effectively remove chromogenic organic compounds (RhB) by the adsorption process. The prepared Fe-BDC/GNPs composite revealed high adsorption toward RhB with removal percentage of higher 90% at an RhB initial concentration of 10 ppm after 2 hours. The Freundlich isotherm was more suitable than the Langmuir isotherm and Temkin isotherm for the adsorption process of Rhodamine B onto the synthesized material with R2 = 0,9955. The analytical outputs also revealed that the adsorption kinetics were more accurately represented by the second-order model as both R2 = 0,9974 and qe,cal was approximate to qe,exp.
Downloads
References
Xiao-Cheng Du, Ji-Hua Zhu, Zheng-Jun Quan and Xi-Cun Wang, New J. Chem., 45 (2021) 3448–3453. https://doi.org/10.1039/D0NJ05750A
Mohamed A. Hassaan, Ahmed El Nemr, International Journal of Photochemistry and Photobiology, 2(3) (2017) 85–93. https://doi.org/10.11648/j.ijpp.20170203.13.
S S Hutagalung, I Muchlis, and K Khotimah, Mater. Sci. Eng. 722(2020) 012032(1-9). https://doi.org/10.1088/1757-899X/722/1/012032
Q. Chen, Q. He, M. Lv, Y. Xu, H. Yang, X. Liu and F. Wei, Appl. Surf. Sci., 327 (2015) 77–85. https://doi.org/10.1016/j.apsusc.2014.11.103
Naresh Yadav Donkadokula, Anand Kishore Kola, Iffat Naz, Devendra Saroj, Rev Environ Sci Biotechnol, 19 (2020) 543–560. https://doi.org/10.1007/s11157-020-09543-z
Krzysztof Piaskowski , Renata Świderska-ąbrowska , Paweł K Zarzycki, J AOAC Int., 101(5) (2018) 1371–1384. https://doi.org/10.5740/jaoacint.18-0051
Elena V. Butyrskaya, Materials Today Communications, 33 (2022) 104327. https://doi.org/10.1016/j.mtcomm.2022.104327
Suh M. P., Park H. J., Prasad T.K., Lim D. W., Chemistry Review, 112(2) (2012) 782–835. https://doi.org/10.1021/cr200274s
Yabing He, Wei Zhou, Guodong Qiand and Banglin Chen., Chem. Soc. Rev., 43 (2014) 5657–5678. https://doi.org/10.1039/C4CS00032C
Gu. Z. Y., Yang C. X., Chang N., Yan X. P, Acc. Chem. Res., 45 (2012) 734–745. https://doi.org/10.1021/ar2002599
Han-Lun Hung, Tomoya Iizuka, Xuepeng Deng, Qiang Lyu, Cheng-Hsun Hsu, Noriyoshi Oe, Li-Chiang Lin, Nobuhiko Hosono, Dun-Yen Kang, Separation and Purification Technology, 310 (2023) 123115. https://doi.org/10.1016/j.seppur.2023.123115
Jaymin Parikh, Brij Mohan, Keyur Bhatt, Nihal Patel, Siddhant Patel, Amish Vyas, Krunal Modi, Microchemical Journal, 184 Part A (2023) 108156. https://doi.org/10.1016/j.microc.2022.108156
Wen Niu, Kaijin Kang, Yi Ou, Yanqiao Ding, Bingsheng Du, Xuezheng Guo, Yiling Tan, Wei Hu, Chao Gao, Yong He, Yongcai Guo, Sensors & Actuators: B. Chemical, 381 (2023) 133347. https://doi.org/10.1016/j.snb.2023.133347
Lien T. L. N., Chi V. N., Giao H. D., Ky K. A. L., Nam T. S. P., Journal of Molecular Catalysis A: Chemical, 349 (2011) 28–35. https://doi.org/10.1016/J.MOLCATA.2011.08.011
Nurul Wafa Othman, Hasmira Radde, Perng Yang Puah, Yee Soon Ling, Pak Yan Moh, Journal of the Chinese Chemical Society, 66(1) (2018) 81–88. https://doi.org/10.1002/jccs.201800216
A. Dhakshinamoorthy, A. M. Asiri, H. García, Trends in chemistry, 2(5) (2020) 454-466. https://doi.org/10.1016/j.trechm.2020.02.004
Somayeh Norouzbahari, Zohreh Mehri Lighvan, Ali Ghadimi, Behrouz Sadatnia, Fuel, 339 (2023) 127463. https://doi.org/10.1016/j.fuel.2023.127463
Y. Xie, S. Lyu, Y. Zhang, Ch. Cai, Materials , 15(21) (2022) 7727. https://doi.org/10.3390/ma15217727
Joon Yeob Lee, Jeong-Hak Choi, Journal of Environmental Science International, 27(7) (2018) 611–620. https://doi.org/10.5322/JESI.2018.27.7.611
Nguyen Thi Hoai Phuong, Dao Xuan Truong, Ha Thi Thanh Duong, Le Thanh Bac, Pham Trung Kien, Nguyen Viet Tung, Ninh Duc Ha, Vietnam J. Chem., 58(5E12) (2020) 322–328.
Enamul Haque, Ji Eun Lee, In Tae Jang, Young Kyu Hwang, Jong-San Chang, Jonggeon Jegal, Sung Hwa Jhung, J. Hazard. Mater. 181 (2010) 535–542. https://doi.org/10.1016/j.jhazmat.2010.05.047
Enamul Haque, Jong Won Jun, Sung Hwa Jhung, J. Hazard. Mater. 185 (2011) 507–511. https://doi.org/10.1016/j.jhazmat.2010.09.035
Haochi Liu, Xiaohui Ren, Ligang Chen, J. Ind. Eng. Chem. 34 (2016) 278–285.
https://doi.org/10.1016/j.jiec.2015.11.020
Y. Kopelevich, P. Esquinazi, Adv. Mater. 19 (24) (2007) 4559–4563. https://doi.org/10.1002/adma.200702051
S. Morozov, K. Novoselov, M. Katsnelson, F. Schedin, D. Elias, J. Jaszczak, et al., Phys. Rev. Lett. 100 (1) (2008) 016602-(1-4). https://doi.org/10.1103/PhysRevLett.100.016602
M.A. Ahsan, V. Jabbari, M.T. Islam, R.S. Turley, N. Dominguez, H. Kim, et al., Sci. Total Environ. 673 (2019) 306–317. https://doi.org/10.1016/j.scitotenv.2019.03.219
L. De Marchi, C. Pretti, B. Gabriel, P.A.A.P. Marques, R. Freitas, V. Neto, Sci. Total Environ. 631–632 (2018) 1440–1456. https://doi.org/10.1016/j.scitotenv.2018.03.132.
C.H. Nguyen, R.-S.-S. Juang, J. Ind. Eng. Chem. 76 (2019) 296–309. https://doi.org/10.1016/j.jiec.2019.03.054
Truong Ngoc Tuan, Tran Van Chinh, Nguyen Hoang Tuan, Nguyen Thi Hoai Phuong, Vietnam Journal of Science and Technology, 56 (2018) 1-10. https://doi.org/10.15625/2525-2518/56/2A/12621
Hongxu Guo, Fan Lin, Jianhua Chen, Feiming Li and Wen Weng, Appl. Organometal. Chem., 29 (2015) 12-19. https://doi.org/10.1002/aoc.3237
Z. Movasaghi, B. Yan, C. Niu, Industrial Crops & Products, 127 (2019) 237–250.
https://doi.org/10.1016/j.indcrop.2018.10.051
Gang Cheng, Feifan Xu, Jinyan Xiong , Fan Tian, Jie Ding, Florian J. Stadler, Rong Chen, Advanced Powder Technology, 27 (2016) 1949-1962. https://doi.org/10.1016/j.apt.2016.06.026