Synthesis and structural characterization of Co-BTC metal-organic framework

Authors

  • Nguyen Van Bang Institute of Chemistry and Materials
  • Quach Manh Hung Hanoi University of Industry
  • Nguyen Xuan Khai Hanoi University of Industry
  • Tran Quang Hai Hanoi University of Industry
  • Truong Viet Hoai Le Quy Don University
  • Nguyen Thi Hoai Phuong Joint Russian - Vietnamese Tropical Center

DOI:

https://doi.org/10.62239/jca.2024.081

Keywords:

Metal-organic framework, 1,3,5-Benzenetricarboxylic acid, microwave method, hydrothermal method, Co-BTC

Abstract

Metal-organic framework materials based on cobalt(II) ions and       1,3,5-Benzenetricarboxylic acid were synthesized by microwave and hydrothermal methods. The time to synthesize materials by hydrothermal method is much longer than by that of the microwave method. Synthesized materials were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), infrared spectroscopy (IR), and Brunauer-Emmett-Teller (BET) surface area. The results showed that the morphology of the Co-BTC is a rod-shaped crystal with length between 5-10 μm. The specific surface area of the material synthesized by microwave and hydrothermal methods is 99.085 m2/g and 45.348 m2/g, respectively.

Downloads

Download data is not yet available.

References

Hiroyasu Furukawa, Kyle E. Cordova, Michael O’Keeffe, Omar M. Yaghi, Science 341 (2013) 1230444. https://doi.org/10.1126/science.1230444

Adhikari A. K., Lin K. S., Tu M. T., J. Taiwan Inst. Chem. E. 63 (2016) 463–472. DOI: 10.1016/j.jtice.2016.02.033.

L.J. Murray, M. Dincă, J.R. Long, Chem. Soc. Rev. 38 (March 25) (2009) 1294-1314. https://doi.org/10.1039/B802256A

A. Corma, H.I. Garcia, F.X. Llabrés i Xamena, Chemical reviews 110 (April 1) (2010) 4606-4655. https://doi.org/10.1021/cr9003924

J.Y. Lee, O.K. Farha, J. Roberts, K.A. Scheidt, S.B.T. Nguyen, J.T. Hupp, Chem. Soc. Rev. 38 (2009) 1450-1459. https://doi.org/10.1039/B807080F

Rodenas T., Luz I., Prieto G., Seoane de la Cuesta B., Miro H., Corma A., Kapteijn F., F. X Llabres i Xamena, Gascon J., Nat. Mater. 14 (2015) 48-55. https://doi.org/10.1038/nmat4113

Ma J., Guo X., Ying Y., Liu D., Zhong C., Chem. Eng. J. 313 (2017) 890-910. https://doi.org/10.1016/j.cej.2016.10.127.

Timofeeva M. N., Panchenko V. N., Khan N. A., Hasan Z., Prosvirin I. P., Tsybulya S. V., Jhung S. H., Appl Catal A-Gen 529 (2017) 167-174. https://doi.org/10.1016/j.apcata.2016.11.006

Loera-Serna S., Ortiz E., Advanced Catalytic Materials—Photocatalysis and Other Current Trends (2016), 95-122. https://doi.org/10.5772/61865.

Ji L., Cheng Q., Wu K., Yang X., Sensor Actuat B-Chem 231 (2016) 12-17. https://doi.org/10.1016/j.snb.2016.03.012.

Yi F.-Y., Zhang R., Wang H., Chen L.-F., Han L., Jiang H.-L., Xu Q., Small Methods 1 (2017) 1-24. https://doi.org/10.1002/smtd.201700187

P. Horcajada, C. Serre, M. Vallet‐Regí, M. Sebban, F. Taulelle, G. Férey, Angewandte chemie, 118 (2006) , 6120-6124. https://doi.org/10.1002/ange.200601878

Safarifard V, Morsali A, Ultrason Sonochem 40 (2018) 921-928. https://doi.org/10.1016/j.ultsonch.2017.09.014

P. Moeck, IEEE 13th Nanotechnology Materials and Devices Conference (NMDC), IEEE (2018) 1-6. https://doi.org/10.1109/NMDC.2018.8605858

Kowalewski E., Zienkiewicz-Machnik M., Lisovytskiy D., AIMS Mater. Sci. 4 (2017) 1276-1288. https://doi.org/10.3934/matersci.2017.6.1276

Wu Y., Song X., Li S., Zhang J., Yang X., Shen P., Gao L., Wei R., Zhang J., Xiao G., Journal of Industrial and Engineering Chemistry 58 (2018), 296–303. https://doi.org/10.1016/j.jiec.2017.09.040

Zhang M., Hu D., Xu Z., Liu B., Boubeche M., Chen Z., Wang Y., Luo H., Yan, K. (2020), Journal of Materials Science & Technology. https://doi.org/10.1016/j.jmst.2020.09.028

Narciso, J., Ramos-Fernandez, E. V., Delgado-Marín, J. J., Affolter, C. W., Olsbye, U., & Redekop, E. A. (2021), Microporous and Mesoporous Materials, 324, 111310. https://doi.org/10.1016/j.micromeso.2021.111310

Laís Weber Aguiar, Cleiser Thiago Pereira da Silva, Hugo Henrique Carline de Lima, Murilo Pereira Moises, Andrelson Wellington Rinaldi, AIMS Materials Science, 5(3) (2018) 467-478. https://doi.org/10.3934/matersci.2018.3.467

R.B. Lin, S. Xiang, W. Zhou, B. Chen, Chem., 6 (2020) 337-363. https://doi.org/10.1016/j.chempr.2019.10.012.

Z. Kang, L. Fan, D. Sun, J. Mater. Chem. A, 5 (2017) 10073-10091. https://doi.org/10.1039/c7ta01142c

Abrori S. A., Trisno,M. L. A., Aritonang R. A., Anshori I., Nugraha, Suyatman, Yuliarto B. IOP Conf. Ser.: Mater. Sci. Eng. (2021) 1045. https://doi.org/10.1088/1757-899X/1045/1/012006

Ge D., Peng J., Qu G., Geng H., Deng Y., Wu J., Cao X., Zheng J., Gu H., New J. Chem., 40 (2016) 9238-9244. https://doi.org/10.1039/c6nj02568d

Punde N. S., Rawool C. R., Rajpurohit A. S., Karna S. P., Srivastava A. K., ChemistrySelect 3 (2018) 11368-11380. https://doi.org/10.1002/slct.201802721

H. Tan, C. Liu, Y. Yan, J. Wu, J. Wuhan Univ. Technol. Mater. Sci. Ed., 30 (2015) 71-75. https://doi.org/10.1007/s11595-015-1103-z.

Sunil Dutt, Ashwani Kumar, Shivendra Singh, Clean Technol. 5(1), (2023), 140-166. https://doi.org/10.3390/cleantechnol5010009

Wu Y., Song X., Xu S., Zhang J., Zhu Y., Gao L., Xiao G., Catalysis Letters 149 (2019) 2575-2585. https://doi.org/10.1007/s10562-019-02874-9

Published

30-12-2024

Issue

Section

Full Articles

How to Cite

Synthesis and structural characterization of Co-BTC metal-organic framework. (2024). Vietnam Journal of Catalysis and Adsorption, 13(4), 97-101. https://doi.org/10.62239/jca.2024.081

Share

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

1-10 of 489

You may also start an advanced similarity search for this article.