Synthesis and structural characterization of Co-BTC metal-organic framework
DOI:
https://doi.org/10.62239/jca.2024.081Keywords:
Metal-organic framework, 1,3,5-Benzenetricarboxylic acid, microwave method, hydrothermal method, Co-BTCAbstract
Metal-organic framework materials based on cobalt(II) ions and 1,3,5-Benzenetricarboxylic acid were synthesized by microwave and hydrothermal methods. The time to synthesize materials by hydrothermal method is much longer than by that of the microwave method. Synthesized materials were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), infrared spectroscopy (IR), and Brunauer-Emmett-Teller (BET) surface area. The results showed that the morphology of the Co-BTC is a rod-shaped crystal with length between 5-10 μm. The specific surface area of the material synthesized by microwave and hydrothermal methods is 99.085 m2/g and 45.348 m2/g, respectively.
Downloads
References
Hiroyasu Furukawa, Kyle E. Cordova, Michael O’Keeffe, Omar M. Yaghi, Science 341 (2013) 1230444. https://doi.org/10.1126/science.1230444
Adhikari A. K., Lin K. S., Tu M. T., J. Taiwan Inst. Chem. E. 63 (2016) 463–472. DOI: 10.1016/j.jtice.2016.02.033.
L.J. Murray, M. Dincă, J.R. Long, Chem. Soc. Rev. 38 (March 25) (2009) 1294-1314. https://doi.org/10.1039/B802256A
A. Corma, H.I. Garcia, F.X. Llabrés i Xamena, Chemical reviews 110 (April 1) (2010) 4606-4655. https://doi.org/10.1021/cr9003924
J.Y. Lee, O.K. Farha, J. Roberts, K.A. Scheidt, S.B.T. Nguyen, J.T. Hupp, Chem. Soc. Rev. 38 (2009) 1450-1459. https://doi.org/10.1039/B807080F
Rodenas T., Luz I., Prieto G., Seoane de la Cuesta B., Miro H., Corma A., Kapteijn F., F. X Llabres i Xamena, Gascon J., Nat. Mater. 14 (2015) 48-55. https://doi.org/10.1038/nmat4113
Ma J., Guo X., Ying Y., Liu D., Zhong C., Chem. Eng. J. 313 (2017) 890-910. https://doi.org/10.1016/j.cej.2016.10.127.
Timofeeva M. N., Panchenko V. N., Khan N. A., Hasan Z., Prosvirin I. P., Tsybulya S. V., Jhung S. H., Appl Catal A-Gen 529 (2017) 167-174. https://doi.org/10.1016/j.apcata.2016.11.006
Loera-Serna S., Ortiz E., Advanced Catalytic Materials—Photocatalysis and Other Current Trends (2016), 95-122. https://doi.org/10.5772/61865.
Ji L., Cheng Q., Wu K., Yang X., Sensor Actuat B-Chem 231 (2016) 12-17. https://doi.org/10.1016/j.snb.2016.03.012.
Yi F.-Y., Zhang R., Wang H., Chen L.-F., Han L., Jiang H.-L., Xu Q., Small Methods 1 (2017) 1-24. https://doi.org/10.1002/smtd.201700187
P. Horcajada, C. Serre, M. Vallet‐Regí, M. Sebban, F. Taulelle, G. Férey, Angewandte chemie, 118 (2006) , 6120-6124. https://doi.org/10.1002/ange.200601878
Safarifard V, Morsali A, Ultrason Sonochem 40 (2018) 921-928. https://doi.org/10.1016/j.ultsonch.2017.09.014
P. Moeck, IEEE 13th Nanotechnology Materials and Devices Conference (NMDC), IEEE (2018) 1-6. https://doi.org/10.1109/NMDC.2018.8605858
Kowalewski E., Zienkiewicz-Machnik M., Lisovytskiy D., AIMS Mater. Sci. 4 (2017) 1276-1288. https://doi.org/10.3934/matersci.2017.6.1276
Wu Y., Song X., Li S., Zhang J., Yang X., Shen P., Gao L., Wei R., Zhang J., Xiao G., Journal of Industrial and Engineering Chemistry 58 (2018), 296–303. https://doi.org/10.1016/j.jiec.2017.09.040
Zhang M., Hu D., Xu Z., Liu B., Boubeche M., Chen Z., Wang Y., Luo H., Yan, K. (2020), Journal of Materials Science & Technology. https://doi.org/10.1016/j.jmst.2020.09.028
Narciso, J., Ramos-Fernandez, E. V., Delgado-Marín, J. J., Affolter, C. W., Olsbye, U., & Redekop, E. A. (2021), Microporous and Mesoporous Materials, 324, 111310. https://doi.org/10.1016/j.micromeso.2021.111310
Laís Weber Aguiar, Cleiser Thiago Pereira da Silva, Hugo Henrique Carline de Lima, Murilo Pereira Moises, Andrelson Wellington Rinaldi, AIMS Materials Science, 5(3) (2018) 467-478. https://doi.org/10.3934/matersci.2018.3.467
R.B. Lin, S. Xiang, W. Zhou, B. Chen, Chem., 6 (2020) 337-363. https://doi.org/10.1016/j.chempr.2019.10.012.
Z. Kang, L. Fan, D. Sun, J. Mater. Chem. A, 5 (2017) 10073-10091. https://doi.org/10.1039/c7ta01142c
Abrori S. A., Trisno,M. L. A., Aritonang R. A., Anshori I., Nugraha, Suyatman, Yuliarto B. IOP Conf. Ser.: Mater. Sci. Eng. (2021) 1045. https://doi.org/10.1088/1757-899X/1045/1/012006
Ge D., Peng J., Qu G., Geng H., Deng Y., Wu J., Cao X., Zheng J., Gu H., New J. Chem., 40 (2016) 9238-9244. https://doi.org/10.1039/c6nj02568d
Punde N. S., Rawool C. R., Rajpurohit A. S., Karna S. P., Srivastava A. K., ChemistrySelect 3 (2018) 11368-11380. https://doi.org/10.1002/slct.201802721
H. Tan, C. Liu, Y. Yan, J. Wu, J. Wuhan Univ. Technol. Mater. Sci. Ed., 30 (2015) 71-75. https://doi.org/10.1007/s11595-015-1103-z.
Sunil Dutt, Ashwani Kumar, Shivendra Singh, Clean Technol. 5(1), (2023), 140-166. https://doi.org/10.3390/cleantechnol5010009
Wu Y., Song X., Xu S., Zhang J., Zhu Y., Gao L., Xiao G., Catalysis Letters 149 (2019) 2575-2585. https://doi.org/10.1007/s10562-019-02874-9
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Vietnam Journal of Catalysis and Adsorption

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.