Effect of halides mol component on photocatalytic activity of BiO(ClBr)(1-X)/2IX materials
DOI:
https://doi.org/10.51316/jca.2023.042Keywords:
Bismuth oxyhalide, BiOX, Photocatalyst, Rhodamine BAbstract
A solid-state reaction in moisture was used for the synthesis of BiOX (X=Cl, Br, and I) and their BiO(ClBr)(1-x)/2Ix (x=0, 0.3, 0.4, 0.5, 0.6, 0.7) solid solutions. Using various modern physicochemical techniques, the structural and optical properties of as-prepared samples. Herein, the X-ray diffraction patterns indicate the variation in lattice parameters via the observable peak shifts. The signals from Raman spectroscopy demonstrate the chemical bonds in the obtained samples. The absorption spectra exhibit an apparent shift toward the visible region with a noticeable reduction in bandgap with the increase of I-content. Among as-prepared samples, the solid solution at x = 0.5 performs the lowest photoluminescence intensity with the highest photocatalytic rhodamine B degradation efficiency under the excitation light source of LED 220V-30W.
Downloads
References
H. Cheng, B. Huang, and Y. Dai, Nanoscale, 4, (2014) 2009-2026. https://10.1039/c3nr05529a
K. S. V. Duttaa, S. Sharmaa, P. Raizadaa, A. Hosseini-Bandegharaeic, P. Thakura, and P. Singh, 78 (2019) 1-20. https://doi.org/10.1016/j.jiec.2019.06.022
Y. Xu, Z. Shi, E. M. B. Brown, and A. Wu, Nanoscale, 25, (2016) 12715-12722, https://doi.org/10.1039/C5NR04540A.
L. Ding et al, 52 (2016) 994-997. https://doi.org/10.1039/C5CC08146G
T. Jiang, J. Li, Y. Gao, L. Li, T. Lu, and L. Pan, Journal of colloid and interface science, 490 (2017) 812-818. https://doi.org/10.1016/j.jcis.2016.12.007
Z. Feng et al., Journal of Environmental Sciences, 87 (2020) 149-162. https://doi.org/10.1016/j.jes.2019.05.032.
J. Xie, Y. Cao, D. Jia, H. Qin, Z. Liang, Catalysis Communications, 69 (2015) 34–38. https://doi.org/10.1016/j.catcom.2015.05.007
M. Watanabe, J. Inoi, S. W. Kim, T. Kaneko, A. Toda, M. Sato, K. Uematsu, K. Toda, T. Koide, M. Toda, E. Kawakami, Y. Kudo, T. Masaki, D. H. Yoon, Journal of the Ceramic Society of Japan, 125 (2017) 472–475. https://doi.org/10.2109/jcersj2.16325
T. Hasegawa, S. W.Kim, Y. Abe, M. Muto, M. Watanabe, T. Kaneko, K. Uematsu, T. Ishigaki, K. Toda, M. Sato, J. Koide, M. Toda, Y. Kudo, RSC Advances, 7, (2017) 25089–25094. https://10.1039/C7RA01832K
K. Sharma et al., Oct., J. Ind. Eng. Chem. 78 (2019) 1–20, https://doi.org/10.1016/j.jiec.2019.06.022
G. Liu, T. Wang, S. Ouyang, L. Liu, H. Jiang, Q. Yu, T. Kako, J. Ye, J. Mater. Chem.y A, 3 (2015) 8123-8132, https://doi.org/10.1039/C4TA07128J
D. Contreras, V. Melin, G. Pérez-González, A. Henríquez, and L. González, 34 (2020) 235–282. https://10.1007/978-3-030-15608-4_10
J. Di, J. Xia, H. Li, S. Guo, and S. Dai, Nano Energy, 41 (2017)172–192. https://10.1016/j.nanoen.2017.09.008
Y. Gao, W. Yang, X. Shan, Y. Chen, Inter. J. Energy Res., 44 (2020) 2226-2242. https://doi.org/10.1002/er.5084
H. Gnayem, Y. Sasson, ACS Catal., 3 (2013) 186-191. https://doi.org/10.1021/cs3005133
S. Wu et al., Chemistry of Materials, 30 (2018) 5128-5136. https://doi.org/10.1021/acs.chemmater.8b01629
W. Zeng et al., Advanced Functional Materials, 29 (2019) 1900129. https://doi.org/10.1002/adfm.201900129
X. Jin, L. Ye, H. Xie, and G. Chen, Coordination Chemistry Reviews, 349 (2017) 84-101. https://doi.org/10.1016/j.ccr.2017.08.010