Adsorption of Iodide (I-) from aqueous solution onto biochar derived from pomelo fruit peel

Authors

  • Duong Bich Ngoc Institute of Regional Sustainable Development, Nguyen Tat Thanh University Author
  • Nguyen Duy Khoi Institute of Fundamental Science and Application, DuyTan University Author
  • Ho Thien Hoang Dong Nai University Author
  • Ton That Loc Institute of Fundamental Science and Application, DuyTan University Author
  • Nguyen Ngoc An Institute of Regional Sustainable Development, Nguyen Tat Thanh University Author
  • Pham Nguyen Kim Tuyen Saigon University Author
  • Huynh Bui Linh Chi Dong Nai University Author
  • Nguyen Thi Thuy Nham Military Hospital 175 Author
  • Hoang Anh Tuan Military Hospital 175 Author
  • Dinh Van Phuc Institute of Regional Sustainable Development, Nguyen Tat Thanh University Author

DOI:

https://doi.org/10.51316/jca.2023.022

Keywords:

Biochar, pomelo fruit, Iodide, adsorption, isotherm, kinetic properties

Abstract

Removing iodide from aqueous solution using biomaterials synthesized from pomelo fruit peel-derived biochar with low costs is a new approach in environmental science and application. The material was characterized by various analytic methods such as XRD, SEM, BET, and FTIR. Additionally, Leuco crystal violet method was used to ascertain the quantity of iodide (I-) adsorbed and UV-Vis spectroscopy was used to quantify it. The effects of pH (2–11) and interaction duration (3–42 h) on the iodide adsorption were carefully examined. To examine the isotherm and dynamic characteristics of the substance, the Langmuir, Freundlich, pseudo-first-order, pseudo-second-order, and in-diffusion models were applied. The results showed that the maximum adsorption took place at pH 2 for 2520 min and the adsorption followed the intra-diffusion kinetic model as well as the maximum capacity (qm) derived from the Langmuir equation was 7,06 mg/g at 303 K, this number is higher than the maximum uptake capacity based on experiment findings (qe = 1,46 mg/g).

Downloads

Download data is not yet available.

References

W.H. Beierwaltes, The treatment of thyroid carcinoma with radioactive iodine, Seminars in Nuclear Medicine. Elsevier, 1978, p. 79.

R. Blumhardt, E.A. Wolin, W.T. Phillips, U.A. Salman, R.C. Walker, B.C. Stack, D.J.E.-R.C. Metter, Endocrine-Related Cancer 21 (2014) R473.

M. Schlumberger, M. Brose, R. Elisei, S. Leboulleux, M. Luster, F. Pitoia, F. Pacini, The lancet Diabetes endocrinology 2 (2014) 356.

I. Benes, W. Muller-Duysing, F. Heinzel, Process for the removal of radioactive iodine from a liquid, especially urine, and apparatus to carry out the process. Google Patents, 1980.

T. Kubota, S. Fukutani, T. Ohta, Y. Mahara, Journal of Radioanalytical Nuclear Chemistry 296 (2013) 981.

B. Zheng, X. Liu, J. Hu, F. Wang, X. Hu, Y. Zhu, X. Lv, J. Du, D. Xiao, Journal of hazardous materials 368 (2019) 81.

Y. Liu, P. Gu, L. Jia, G. Zhang, Journal of hazardous materials 302 (2016) 82.

Y. Liu, P. Gu, Y. Yang, L. Jia, M. Zhang, G. Zhang, Separation Purification Technology 171 (2016) 221.

R.A. Rahman, H. Ibrahium, Y.-T. Hung, Water 3 (2011) 551.

P. Singare, R. Lokhande, Ionics 18 (2012) 351.

S. Mushtaq, S.-J. Yun, J.E. Yang, S.-W. Jeong, H.E. Shim, M.H. Choi, S.H. Park, Y.J. Choi, J. Jeon, Environmental Science: Nano 4 (2017) 2157.

H.E. Shim, J.E. Yang, S.-W. Jeong, C.H. Lee, L. Song, S. Mushtaq, D.S. Choi, Y.J. Choi, J. Jeon, Nanomaterials 8 (2018) 660.

J. Huve, A. Ryzhikov, H. Nouali, V. Lalia, G. Augé, T.J.J.R.a. Daou, RSC advances 8 (2018) 29248.

A.H. Jawad, A. Saud Abdulhameed, L.D. Wilson, S.S.A. Syed-Hassan, Z.A. Alothman, M. Rizwan Khan, Chinese Journal of Chemical Engineering 32 (2021) 281. https://10.1016/j.cjche.2020.09.070

G.Z. Kyzas, G. Bomis, R.I. Kosheleva, E.K. Efthimiadou, E.P. Favvas, M. Kostoglou, A.C. Mitropoulos, Chemical Engineering Journal 356 (2019) 91. https://10.1016/j.cej.2018.09.019

S.A. Patil, U.P. Suryawanshi, N.S. Harale, S.K. Patil, M.M. Vadiyar, M.N. Luwang, M.A. Anuse, J.H. Kim, S.S. Kolekar, International Journal of Environmental Analytical Chemistry 102 (2020) 8270. https://10.1080/03067319.2020.1849648

A. Yazidi, M. Atrous, F. Edi Soetaredjo, L. Sellaoui, S. Ismadji, A. Erto, A. Bonilla-Petriciolet, G. Luiz Dotto, A. Ben Lamine, Chemical Engineering Journal 379 (2020). https://10.1016/j.cej.2019.122320

J. Szerement, A. Szatanik-Kloc, R. Jarosz, T. Bajda, M. Mierzwa-Hersztek, Journal of Cleaner Production 311 (2021).

https://10.1016/j.jclepro.2021.127461

K. Kordatos, S. Gavela, A. Ntziouni, K.N. Pistiolas, A. Kyritsi, V. Kasselouri-Rigopoulou, Microporous and Mesoporous Materials 115 (2008) 189. https://10.1016/j.micromeso.2007.12.032

J. Madhu, A. Santhanam, M. Natarajan, D. Velauthapillai, RSC Adv 12 (2022) 23221. https://10.1039/d2ra04052b

M. Forghani, A. Azizi, M.J. Livani, L.A. Kafshgari, Journal of Solid State Chemistry 291 (2020). https://10.1016/j.jssc.2020.121636

J. Li, H. Wang, X. Yuan, J. Zhang, J.W. Chew, Coordination Chemistry Reviews 404 (2020). https://10.1016/j.ccr.2019.213116

A. Ghosh, G. Das, Microporous and Mesoporous Materials 297 (2020). https://10.1016/j.micromeso.2020.110039

C.-C. Chien, Y.-P. Huang, W.-C. Wang, J.-H. Chao, Y.-Y. Wei, CLEAN - Soil, Air, Water 39 (2011) 103. https://10.1002/clen.201000012

S.U. Nandanwar, K. Coldsnow, A. Porter, P. Sabharwall, D. Eric Aston, D.N. McIlroy, V. Utgikar, Chemical Engineering Journal 320 (2017) 222. https://10.1016/j.cej.2017.03.020

M.R. Zia, M.A. Raza, S.H. Park, N. Irfan, R. Ahmed, J.E. Park, J. Jeon, S. Mushtaq, Nanomaterials (Basel) 11 (2021). https://10.3390/nano11030588

S.P. Sohi, Science 338 (2012) 1034. https://10.1126/science.1225987

A. Shakya, T. Agarwal, Journal of Molecular Liquids 293 (2019). https://10.1016/j.molliq.2019.111497

R. Senthilkumar, D.M. Reddy Prasad, L. Govindarajan, K. Saravanakumar, B.S. Naveen Prasad, Int J Phytoremediation 22 (2020) 279. https://10.1080/15226514.2019.1658710

V.-P. Dinh, D.-K. Nguyen, T.-T. Luu, Q.-H. Nguyen, L.A. Tuyen, D.D. Phong, H.A.T. Kiet, T.-H. Ho, T.T.P. Nguyen, T.D. Xuan, P.T. Hue, N.T.N. Hue, Materials Chemistry and Physics 285 (2022). https://10.1016/j.matchemphys.2022.126105

D. Cheng, H.H. Ngo, W. Guo, S.W. Chang, D.D. Nguyen, X. Zhang, S. Varjani, Y. Liu, Sci Total Environ 720 (2020) 137662. https://10.1016/j.scitotenv.2020.137662

B. Zhang, Y. Wu, L. Cha, Journal of Dispersion Science and Technology 41 (2019) 125. https://10.1080/01932691.2018.1561298

V.P. Dinh, T.D. Huynh, H.M. Le, V.D. Nguyen, V.A. Dao, N.Q. Hung, L.A. Tuyen, S. Lee, J. Yi, T.D. Nguyen, L.V. Tan, RSC Adv 9 (2019) 25847. https://10.1039/c9ra04296b

V.P. Dinh, T.D. Xuan, N.Q. Hung, T.T. Luu, T.T. Do, T.D. Nguyen, V.D. Nguyen, T.T.K. Anh, N.Q. Tran, Environ Sci Pollut Res Int 28 (2021) 63504. https://10.1007/s11356-020-10176-6

M.A. Hashem, M. Hasan, M.A. Momen, S. Payel, M.S. Nur-A-Tomal, Environmental and Sustainability Indicators 5 (2020).

https://10.1016/j.indic.2020.100022

E.W. Rice, L. Bridgewater, Standard methods for the examination of water and wastewater, American public health association Washington, DC, 2012.

T. Zhang, P. Li, C. Fang, R.F. Jiang, S.B. Wu, H.Y. Nie, Advanced Materials Research 726-731 (2013) 1679.

https://10.4028/www.scientific.net/AMR.726-731.1679

L.M. Ferreira, R.R. de Melo, A.S. Pimenta, T.K.B. de Azevedo, C.B. de Souza, Biomass Conversion and Biorefinery 12 (2020) 1181. https://10.1007/s13399-020-00660-x

K.V. Kumar, S. Gadipelli, B. Wood, K.A. Ramisetty, A.A. Stewart, C.A. Howard, D.J.L. Brett, F. Rodriguez-Reinoso, Journal of Materials Chemistry A 7 (2019) 10104. https://10.1039/c9ta00287a

M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Pure and Applied Chemistry 87 (2015) 1051. https://10.1515/pac-2014-1117

Y. Liu, X. Liu, W. Dong, L. Zhang, Q. Kong, W. Wang, Sci Rep 7 (2017) 12437. https://10.1038/s41598-017-12805-6

M.M. Hamed, H.E. Rizk, I.M. Ahmed, Journal of Molecular Liquids 249 (2018) 361. https://10.1016/j.molliq.2017.11.049

V.K. Rajak, S. Kumar, N.V. Thombre, A. Mandal, Chemical Engineering Communications 205 (2018) 897.

https://10.1080/00986445.2017.1423288

M. Elkady, H. Shokry, H. Hamad, Materials (Basel) 13 (2020). https://10.3390/ma13112498

Z. Azizi Haghighat, E. Ameri, Desalination and Water Treatment 57 (2015) 9813. https://10.1080/19443994.2015.1033475

A.M. Cardenas Peña, J.G. Ibáñez Cornejo, R.C. Vásquez Medrano, Int. J. Electrochem. Sci. 7 (2012) 6142.

N. Fiol, I. Villaescusa, Environmental Chemistry Letters 7 (2009) 79.

Published

30-06-2023

Issue

Section

Full Articles

How to Cite

Adsorption of Iodide (I-) from aqueous solution onto biochar derived from pomelo fruit peel . (2023). Vietnam Journal of Catalysis and Adsorption, 12(2), 7-14. https://doi.org/10.51316/jca.2023.022

Share

Similar Articles

1-10 of 226

You may also start an advanced similarity search for this article.