Preparation of hydrogel calcium-alginate microparticles via microfluidic device for Cu2+ treatment

Authors

  • Dang Cu Trung Hanoi University of Science and Technology Author
  • Le Ha Phuong Hanoi University of Science and Technology Author
  • Hoang Thu Hong Hanoi University of Science and Technology Author
  • Mac Thi Thu Mai Hanoi University of Science and Technology Author
  • Tran Khac Vu Hanoi University of Science and Technology Author
  • Ta Hong Duc Hanoi University of Science and Technology Author
  • Dang Trung Dung Hanoi University of Science and Technology Author

DOI:

https://doi.org/10.51316/jca.2020.010

Keywords:

Calcium-alginate, Microparticle, Microfluidic device, Divalent copper ions

Abstract

Alginate-based hydrogels are attracted much attention in biomedical and chemical field, and their size and shape are significant to their applications like drug delivery and cell encapsulation. Monodisperse sodium alginate microdroplets are produced using a flow-focusing microfluidic device (MFFD) by adjusting the flow rate on the continuous phase (soybean oil) and the dispersed phase (sodium alginate solution). The external gelation process of sodium alginate microdroplets occurs outside the chanel in a calcium chloride solution to form calcium alginate hydrogel particales. The shape, size and size distribution of these calcium alginate hydrogel particles depend strongly on the flow rate inside the MFFD. By optimizing the parameters, the hydrogel microparticles were obtained with diameters ranging from 70 µm to 100 µm with size distribution under 10%, depending on experimental conditions. The removal of Cu2+ ions by the absorption of hydrogel microparticles was also demonstrated.

Downloads

Download data is not yet available.

References

P. Aslani, R.A. Kennedy, J. Microencapsul. 13 (1996) 601–614. https://doi.org/10.3109/02652049609026044

X. Xie, et al., Nano Lett. 17 (2017) 2015–2020. https://doi.org/10.1021/acs.nanolett.7b00026

G.C. Le Goff, R.L. Srinivas, W.A. Hill, P.S. Doyle, Eur. Polym. J. 72 (2015) 386–412. http://dx.doi.org/10.1016/j.eurpolymj.2015.02.022

L. Chen, et al., Int. J. Mol. Sci. 18(5) (2017) 989. https://doi.org/10.3390/ijms18050989

J.A. Rowley, et al., Biomaterials 20 (1999) 45–53. https://doi.org/10.1016/S0142-9612(98)00107-0

Z. Chen, et al., J. Biomater. Sci. Polym. Ed. 29 (2018) 309–324. https://doi.org/10.1080/09205063.2017.1415583

K. Chen, et al., Biomacromolecules 13 (2012) 2748–2759. https://doi.org/10.1021/bm3007242

M. Yamada, M. Seki, J. Chem. Eng. Jpn. 51 (2018) 318–330. https://doi.org/10.1252/jcej.17we328

J.Y. Leong, et al., Particuology 24 (2016) 44–60. http://dx.doi.org/10.1016/j.partic.2015.09.004

Jeon. C., et al., Hydrometallurgy 86(3–4) (2007) 140–146. https://doi.org/10.1016/j.hydromet.2006.11.010

Gotoh.T, et al., Chemosphere 55(1) (2004) 57–64. https://doi.org/10.1016/j.chemosphere.2003.10.034

Chen. J.P, et al., Environ. Sci. Technol. 31(5) (1997) 1433–1439. https://doi.org/10.1021/es9606790

Arı ca. M.Y,Bayramolu. G, Yılmaz. M, Bekta˛. S, Genc. O, J. Hazard. Mater. 109(1–3) (2004) 191–199. https://doi.org/10.1016/j.jhazmat.2004.03.017

Aksu. Z, et al., Proc. Biochem 33(4) (1998) 393–400. https://doi.org/10.1016/S0032-9592(98)00002-8

Abu Al-Rub. F.A, El Naas. M.H, Benyahia. F, Ashour. I, Proc. Biochem. 39(11) (2004) 1767–1773. https://doi.org/10.1016/j.procbio.2003.08.002

O¨ nal. S, et al., J. Hazard. Mater. 146(1–2) (2007) 417–420. https://doi.org/10.1016/j.jhazmat.2007.03.005

Pandey. A, et al., Chem. Spec. Bioavail. 19(1) (2007) 17–24. https://doi.org/10.3184/095422907X198031

Dhakal. R.P, Ghimire. K.N, Inoue. K, Yano. M, Makino. K, Separ. Purific. Technol. 42(3) (2005) 219–225. https://doi.org/10.1016/j.seppur.2004.07.016

Jang. L.K, et al., Biotechnol. Bioeng. 37(3) (1991) 266–273. https://doi.org/10.1002/bit.260370309

Pandey. A.K, Pandey. S.D, Misra. V, Ecotoxicology and Environmental Safety 52(2) (2002) 92–96. https://doi.org/10.1006/eesa.2002.2144

Ib´anez. J.P, Umetsu. Y, Hydrometallurgy 64(2) (2002) 89–99. https://doi.org/10.1016/S0304-386X(02)00012-9

Lagoa. R, et al., Appl. Biochem. Biotechnol. 143(2) (2007) 115–128. https://doi.org/10.1007/s12010-007-0041-4

N. Kojima, et al., Sens. Actuator B: Chem. 198 (2014) 249–254. https://doi.org/10.1016/j.snb.2014.02.099

S. Sugiura, et al., Biomed. Microdevices 9 (2007) 91–99. https://doi.org/10.1007/s10544-006-9011-9

K. Maeda, et al., Adv. Mater. 24 (2012) 1340–1346. https://doi.org/10.1002/adma.201102560

H. Onoe, et al., RSC Adv. 4 (2014) 30480. https://doi.org/10.1039/C4RA02773F

T.D. Dang, et al., Colloids Surf. B, 102 (2013) 766-711. https://doi.org/10.1016/j.colsurfb.2012.09.016

Published

30-04-2020

Issue

Section

Full Articles

How to Cite

Preparation of hydrogel calcium-alginate microparticles via microfluidic device for Cu2+ treatment. (2020). Vietnam Journal of Catalysis and Adsorption, 9(1), 60-66. https://doi.org/10.51316/jca.2020.010

Share

Most read articles by the same author(s)

Similar Articles

1-10 of 76

You may also start an advanced similarity search for this article.