Study on the adsorption of 2,4-dichlorophenoxyacetic acid on carbon nanotube by means of density functional theory
DOI:
https://doi.org/10.51316/jca.2021.002Keywords:
CNT, POPs, adsorption, DFTAbstract
The adsorption of 2,4-dichlorophenoxyacetic acid (2,4-D) on the catalytic systems comprising a transition metal (Fe, Ag) on a single walled carbon nanotube (CNT) has been investigated using density functional theory method. The adsorption energy, charges on atoms, bond orders have been calculated and analysed. The obtained results indicate that the adsorption of 2,4-D on the pristine CNT is physical of nature. Metal atoms can easily be doped on CNT due to the formation of chemical bonds. The M-CNT systems (M = Fe, Ag) have the ability to chemically adsorb 2,4-D. The results have also shown that the Fe-CNT is more effective at adsorbing 2,4-D as compare to the Ag-CNT.
Downloads
References
C.J. Burns, G.M. Swaen, Crit. Rev. Toxicol. 42(9) (2012) 768-786. https://doi.org/10.3109/10408444.2012.710576
Pariatamby, Y.L. Kee, Procedia Environ. Sci. 31 (2016) 842-848. https://doi.org/10.1016/j.proenv.2016.02.093.3.
M.Trojanowicz, Sci. Total Environ. 718 (2020) 134425. https://doi.org/10.1016/j.scitotenv.2019.134425.
S. Iijima, Nature 354 (1991) 56–58. https://doi.org/10.1038/354056a0
M. Cinke, J. Li, C.W. Bauschlicher, A.Ricca, M. Meyyappan, Chem. Phys. Lett. 376 (5-6) (2003)
761-766, https://doi.org/10.1016/S0009-2614(03)01124-2
C. Lu, H. Chiu, C. Liu, Ind. Eng. Chem. Re. 45(8) (2006) 2850-2854. https://doi.org/10.1021/ie051206h
H. J. Wang, A. L. Zhou, F. Peng, H. Yu, L. F. Chen, Mater. Sci. Eng, 466 (2007) 201-206. https://doi.org/10.1016/j.msea.2007.02.097
P. A. Gauden, A. P. Terzyk, G. Rychlicki, P. Kowalczyk, K. Lota, E. Raymundo-Pinero, et al, Chem. Phys. Lett. 421 (2006) 409-414. https://doi.org/10.1016/j.cplett.2006.02.003
C. Lu, Y. L. Chung, K. F. Chang, Water Res. 39(6) (2005) 1183-1189. DOI: 10.1016/j.watres.2004.12.033
K. Yang, L. Zhu, B. Xing, Environ Sci. Technol. 40(6) (2006) 1855-1861. https://doi.org/10.1021/es052208w
R. Q. Long, R. T. Yang, J. Am. Chem. Soc. 123(9) (2001) 2058-9. https://: 10.1021/ja003830l
X. Peng, Y. Li, Z. Luan, Z. Di, H. Wang, B. Tian, et al, Chem Phys Lett, 376 (2003) 154-158. https://doi.org/10.1016/S0009-2614(03)00960-6
S. B. Fagan, A. G. S. SouzaFilho, J. Lima, J. Filho, O. Ferreira, I. Mazali, et al, Nano. Lett., 4 (2004), 1285-1288. https://doi.org/10.1021/nl0493895
D. Hedman, H.R. Barzegar, A. Rosén, T. Wågberg, et al. Sci. Rep. 5 (2015) 16850. https://dx.doi.org/10.1038/srep16850
J.H. Warner, F.Schäffel, G.Zhong, M.H. Rümmeli et al., ACS Nano 3 (6) (2009) 1557-1563. https://dx.doi.org/10.1021/nn900362a
J. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Let. 77 (18) (1996) 3865. https://dx.doi.org/10.1103/PhysRevLett.77.3865
D.R. Hamann, M. Schlüter, C. Chiang, Phys. Rev. Lett. 43 (1979) 1494–1497. https://doi.org/101103/PhysRevLett431494
K.L. Kleinman and D.M. Bylander, Phys. Rev. Lett. 48 (1982) 1425. https://dx.doi.org/10.1103/PhysRevLett.48.1425
J. M. Soler, E. Artacho, J.D. Gale, A. García, et al., The SIESTA method for ab initio order-Nmaterials simulation, J. Phys. Cond. Matt. 14 (11) (2002) 2745
Mayer, J. Comput. Chem. 28 (2007) 204-221. https://doi.org/10.1002/jcc.20494
J.C. Slater, J. Chem. Phys. 41 (1964) 3199. Bibcode:1964JChPh..41.3199S
E.M. Pérez, N. Martín, Chem. Soc. Rev. 44 (2015) 6425-6433, https://doi.org/10.1039/C5CS00578G
O. Walter, Appl. Phys. Lett. 105 (023110) (2014) https://doi.org/10.1063/1.4890591
N. T. T. Ha, L. V. Khu, L. M. Cam, N. N. Ha, Comp. Theor. Chem., 1100 (2017) 46-51. https://dx.doi.org/10.1016/j.comptc.2016.12.006.
M. Barberio, P. Barone, F. Stranges, R.A. Romano, et al. J. Chem. 2014 (2014). https://doi.org/10.1155/2014/816193.
E. Durgun, S. Dag, S. Ciraci, O. Gülseren, J. Phys. Chem. B 108 (2) (2004) 575-582. https://doi.org/10.1021/jp0358578
J.W. Buchanan, G.A. Grieves, J.E. Reddic, M.A. Duncan, Int. J. Mass Spectrom. 182–183 (1999) 323-333. https://doi.org/10.1016/S1387-3806(98)14239-2