Study on interaction mechanism of sulfisoxazole on rutile-TiO2 (110) surface using quantum chemical method
DOI:
https://doi.org/10.51316/jca.2023.059Keywords:
Rutile-TiO2, material surface, DFT calculation, sulfisoxazoleAbstract
Recently, investigations on the binding mechanism between organic molecules and material surfaces have been interests for scientists to have insights into surface phenomena, sensing performance and photocatalytic reactions. In the present work, we use density functional theory (DFT) computations including van der Waals (vdW) forces to investigate the interaction of sulfisoxazole (SFX) and the rutile-TiO2 (110) surface (r-TiO2). Results indicate that the adsorption process of SFX on r-TiO2 is regarded as chemisorption with an associated energy ca. -51.5 kcal.mol-1. The stable configurations are considerably contributed by Ti5f‧‧‧O electrostatic interactions. Besides, the hydrogen bonds of the N/C-H‧‧‧Ob type play an additional role in the stabilization of complexes. The existence and stability of surface interactions in the configurations are clarified by PA, DPE, MEP, and AIM analyses. Consequently, the binding of SFX on r-TiO2 is favorable at >S=O group and Ti5f sites.
Downloads
References
P. Grenni, V. Ancona, A. B. Caracciolo, Microchem. J. 136 (2018) 25–39. https://doi.org/10.1016/j.microc.2017.02.006
K. Kümmerer, Chemosphere 75 (2009) 417-434. https://doi.org/10.1016/j.chemosphere.2008.11.086
M. Gonzalez-Pleiter, S. Gonzalo, I. Rodea-Palomares, F. Leganes, R. Rosal, K. Boltes, E. Marco, F. Fernandez-Piñas, Water Res. 47 (2013) 2050–2064. https://doi.org/10.1016/j.watres.2013.01.020
I. Michael, L. Rizzo, C. S. McArdell, C. M. Manaia, C. Merlin, T. Schwartz, C. Dagot and D. Fatta-Kassinos, Water Res. 47 (2013) 957-995. https://doi.org/10.1016/j.watres.2012.11.027
J. Niu, L. Zhang, Y. Li, J. Zhao, S. Lv and K. Xiao, J. Environ. Scie. 25 (2013) 1098-1106. https://doi.org/10.1016/S1001-0742(12)60167-3
Y. Hu, L. Jiang, T. Zhang, L. Jin, Q. Han, D. Zhang, K. Lin, C. Cui, J. Hazard. Mater. 360 (2018) 364-372. https://doi.org/10.1016/j.jhazmat.2018.08.012
Y. Song, J. Jiang, J. Ma, Y. Zhou, U. von Gunten, Water Res. 153 (2019) 200-207. https://doi.org/10.1016/j.watres.2019.01.011
A. Fujishima, X. Zhang, D. A. Tryk, Surf. Sci. Rep. 63 (2008) 515–582. https://doi.org/10.1016/j.surfrep.2008.10.001
F. Zhang, X. Wang, H. Liu, C. Liu, Y. Wan, Y. Long and Z. Cai, Appl. Scie. 9 (2019) 2489(1-43). https://doi.org/10.3390/app9122489
U. Diebold, Appl. Phys. A 76 (2003) 681–687. https://doi.org/10.1007/s00339-002-2004-5
N. N. Tri, H. Q. Dai, A. J. P. Carvalho, M. T. Nguyen and N. T. Trung, Surf. Scie. 703 (2021) 121723(1-8). https://doi.org/10.1016/j.susc.2020.121723
G. T. Andrew, L. S. Karen, Chem. Soc. Rev. 41 (2012) 4207-4217. https://doi.org/10.1039/C2CS35057B
R. Dronskowski, Computational Chemistry of Solid State Materials, WILEYVCB Verlag GmbH & Co.KGaA, Weinheim, 2005.
J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865-3868. https://doi.org/10.1103/PhysRevLett.77.3865
K. Lee, E. D. Murray, L. Kong, B. I. Lundqvist, and D. C. Langreth, Physical Review B 82 (2010) 081101(1-4). https://doi.org/10.1103/PhysRevB.82.081101
J. Hafner, J. Com. Chem. 29 (2008) 2044–2078. https://doi.org/10.1002/jcc.21057
G. Kresse and D. Joubert, Phys. Rev. 59 (1999) 1758-1775.
https://doi.org/10.1103/PhysRevB.59.1758
M. J. Frisch et al. Gaussian 09 (Revision B.01), Wallingford, CT: Gaussian, 2010.
R. F. W. Bader. Atoms in molecules: A quantum theory, Oxford: Oxford University Press, 1990.
N. N. Tri, H. Q. Dai, N. T. Trung, Vietnam J. Scie. Tech. 57(4) (2019) 449-456.
https://doi.org/10.15625/2525-2518/57/4/13298
N. N. Tri, H. Q. Dai, N. T. Trung, Vietnam J. Chem. 56(6) (2018) 751-756. https://doi.org/10.1002/vjch.201800082
Downloads
Published
Issue
Section
How to Cite
Share
Funding data
-
Quỹ Đổi mới sáng tạo Vingroup
Grant numbers VINIF.2022.STS.19