Decolorization of organic dyes in water using non-thermal plassma
DOI:
https://doi.org/10.51316/jca.2021.144Keywords:
Non-thermal plasma, dielectric barrier discharge, organic dyes, decolorizationAbstract
Decolorization of azo dye methyl orange (MO) in aqueous solution was performed using non-thermal plasma in a dielectric barrier discharge device with the coaxial configuration. The results show that the average H2O2 accumulation rate is 0.73 mg/min (under the condition: discharge voltage 18 kV, solution volume of 500 ml, liquid flow rate of 100 ml/min, O2 flow rate of 0.5 l/min). The influence of parameters, including the liquid flow rate, gas flow, initial dye concentration on the decolorization efficiency has been studied on the batch processing model After 12 minutes of plasma treatment of MO solutions with initial concentrations of 100, 200, 300, 400 and 500 mg/l, the decolorization efficiencies were of 94.2%, 84.5%, 80.1%, 70.5% and 61.6%, respectively. In particular, after 48 minutes of the operation, decolorization efficiency was over 99% in all samples, which shows that the energy efficiency increases as the initial concentration of MO increases
Downloads
References
Juan Matıas Chacon, Ma. Teresa Leal, Manuel Sa nchez, Erick R. Bandala, Dyes and Pigments 69 (2006) 144 – 150. https://doi.org/10.1016/j.dyepig.2005.01.020
R.K. Singh, V. Babu, L. Philip, S. Ramanujam., J. Water Process Eng. 11 (2016) 118–129. https://doi.org/10.1016/j.jwpe.2016.04.002
AE Ghaly, R Ananthashankar, M Alhattab and VV Ramakrishnan. J Chem Eng Process Technol 5(1) (2014) 1000182. http://dx.doi.org/10.4172/2157-7048.1000182
Deepa Chandran., International Journal of Scientific & Engineering Research 7(1) (2016) 392-403. https://doi.org/10.51316/jca.2021.144
P. Nidheesh, R. Gandhimathi, S. Ramesh., Environ Sci. Pollut. 20 (2013) 2099–2132.
https://doi.org/10.1007/s11356-012-1385-z
X. Wang, X. Jin, M. Zhou, Y. Liu, X. Zhang, Electrochim. Acta 103 (2013) 237–242.
https://doi.org/10.1016/j.electacta.2013.04.049
P. Bruggeman and D.C. Schram. Plasma Sources Sci. Technol. 19(4) (2010) 045025-1/9.
http://doi.org/10.1088/0963-0252/19/4/045025
Bruggeman, P.; Leys, J. Phys. D Appl. Phys. 42 (2009) 53001.
Zeghioud, Hichem; Nguyen-Tri, Phuong; Khezami, Lotfi, Journal of Water Process Engineering 38 (2020) 101664. https://doi.org/10.1016/j.jwpe.2020.101664
Y.S. Mok, J.O. Jo, J.C. Whitehead, Chem. Eng. J. 142 (2008) 56–64. https://doi.org/10.1016/j.cej.2007.11.012
G. Chen, M. Zhou, S. Chen, W. Chen, J. Hazard. Mater. 172 (2009) 786–791.
https://doi.org/10.1016/j.jhazmat.2009.07.067
S. Pankaj, Z. Wan, W. Colonna, K.M. Keener, Water Sci. Technol. 76 (2017) 567–574.
https://doi.org/10.2166/wst.2017.169
K. Priya Arjunan, A. Morss Clyne, Plasma Process. Polym. 8 (2011) 1154–1164. https://doi.org/10.1002/ppap.201100078
X.-Q. Wang, F.-P. Wang, X.-H. Zeng, Q. Zhang, W. Zhang, J.-Y. Le, S.-Z. Yang, Jpn. J. Appl. Phys. 54 (2015) 056201. http://doi.org/10.7567/JJAP.54.056201
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
Share
Funding data
-
Vietnam Academy of Science and Technology
Grant numbers VAST 07.01/20-21