Synthesis of Fe-doped TiO2 nanotubes by hydrothermal method for photodegradation of methylene blue from aqueous solutions
DOI:
https://doi.org/10.51316/jca.2022.005Keywords:
Fe doping, TiO2 nanotubes, hydrothermal synthesis, methylene blue, photodegradationAbstract
Fe-doped TiO2 nanotubes were prepared by hydrothermal method using ferric nitrate and commercial TiO2 powder. The obtained materials were characterized by means of XRD, TEM, BET, FT-IR and UV-Vis-DRS. The photocatalytic activity was evaluated based on photodegradation of methylene blue under visible light irradiation. The results show that Fe3+ ions might incorporate into the lattice of TiO2 nanotubes. Fe-doped TiO2 materials showed narrower band gap energies, higher specific surface areas, more hydroxyl groups on the surface and significantly improved photocatalytic activity. The optimum Fe doping at the molar ratios of Fe/Ti = 0.5% showed the highest photocatalytic activity and was 3.08 times higher than that of undoped TiO2. The kinetic studies showed the decomposition of MB followed pseudo first-order kinetics with the rate constant were determined kapp = 5.64×10-2 min−1.
Downloads
References
A. Mills, D. Hazafy, J. Parkinson, T. Tuttle, M.G. Hutchings, Dyes and Pigments 88 (2011) 149. https://10.1016/j.dyepig.2010.05.015
M.R. Bayati, F. Golestani-Fard, A.Z. Moshfegh, Applied Catalysis A: General 382 (2010) 322. https://10.1016/j.apcata.2010.05.017
O. Carp, Progress in Solid State Chemistry 32 (2004) 33. https://10.1016/j.progsolidstchem.2004.08.001
M.A. Lopez Zavala, S.A. Lozano Morales, M. Avila-Santos, Heliyon 3 (2017) e00456. https://10.1016/j.heliyon.2017.e00456
M. Shahrezaei, S. Habibzadeh, A.A. Babaluo, H. Hosseinkhani, M. Haghighi, A. Hasanzadeh, R. Tahmasebpour, Journal of Experimental Nanoscience 12 (2016) 45. https://10.1080/17458080.2016.1258495
S. Zhiming, M. Rui, Z. Xiyu, W. Lina, W. Xiaohuan, Rare Metal Materials and Engineering 46 (2017) 3244. https://10.1016/s1875-5372(18)30037-7
J. Yu, Q. Xiang, M. Zhou, Applied Catalysis B: Environmental 90 (2009) 595. https://10.1016/j.apcatb.2009.04.021
N.M. A. Ranjitha, M. Thambidurai, D. Velauthapillai, S. Agilan, R. Balasundaraprabhu, Optik 126 (2015) 2491. https://10.1016/j.ijleo.2015.06.022
F.O. Kashif Naeem, Physica B 405 (2010) 221. https://10.1016/j.physb.2009.08.060
W.W. Wei-Qiang Han, Ding Yi, Zhenxian Liu, Mathew M. Maye, Laura Lewis, Jonathan Hanson, and Oleg Gang, J. Phys. Chem. C 111 (2007) 14339. https://10.1021/jp074381f
W. Y. Teoh, R. Amal, L. Ma¨dler, S. E. Pratsinis, Catalysis Today 120 (2007) 203. https://10.1016/j.cattod.2006.07.049
C.-C. Tsai, H. Teng, Applied Surface Science 254 (2008) 4912. https://10.1016/j.apsusc.2008.01.140
T. Puangpetch, P. Sommakettarin, S. Chavadej, T. Sreethawong, International Journal of Hydrogen Energy 35 (2010) 12428. https://10.1016/j.ijhydene.2010.08.138
S. Sood, A. Umar, S.K. Mehta, S.K. Kansal, J Colloid Interface Sci 450 (2015) 213. 10.1016/j.jcis.2015.03.018
X. Cheng, X. Yu, Z. Xing, Applied Surface Science 258 (2012) 3244. https://10.1016/j.apsusc.2011.11.072
T. Tong, J. Zhang, B. Tian, F. Chen, D. He, J Hazard Mater 155 (2008) 572. https://10.1016/j.jhazmat.2007.11.106
D.-S. Lee, S.-Y. Lee, K.Y. Rhee, S.-J. Park, Current Applied Physics 14 (2014) 415. https://10.1016/j.cap.2013.12.018