The synthesis of γ-MnOOH nanorods as an efficient electrocatalyst for urea oxidation

Authors

  • Minh Tuan Nguyen Dinh The University of Danang, University of Science and Technology, 54, Nguyen Luong Bang, Danang city, Viet Nam
  • Huy Thai Le The University of Danang, University of Science and Technology, 54, Nguyen Luong Bang, Danang city, Viet Nam
  • Trung Hieu Le Faculty of Chemistry, Hue University of Sciences, Hue University, Thua Thien Hue 530000, Vietnam
  • Chinh Chien Nguyen Institute of Research and Development, Duy Tan University, Danang city 550000, Vietnam. Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang 550000, Vietnam

DOI:

https://doi.org/10.51316/jca.2023.038

Keywords:

γ-MnOOH, urea oxidation reaction, oxygen evolution reaction

Abstract

In this study, γ-MnOOH nanorods synthesized by polysaccharide- assisted hydrothermal method as an efficient electrocatalyst for urea oxidation. The γ-MnOOH structure and morphology are confirmed by X-ray diffraction and scanning electron microscopy (SEM). The γ-MnOOH material, which contains hydroxyl groups and has an average oxidation state of Mn of three as demonstrated by XPS, exhibits excellent electrocatalytic activity towards urea oxidation reaction () compared to bare nickel foam (NF). Specifically, the overpotential at 10 mA/cm2 for γ-MnOOH is found to be 1.05 V, which is significantly lower than that of the NF (i.e., 1.12 V). Notably, the UOR over γ-MnOOH has a potential that is 180 mV lower than observed during the oxygen evolution reaction (OER) using the same electrode. These findings suggest that the γ-MnOOH nanorods could serve as a promising electro-catalyst for UOR in various energy storage and conversion applications.

Downloads

Download data is not yet available.

References

M. Momirlan, T.N. Veziroglu, Renewable and Sustainable Energy Reviews, 6 (2002) 141-179. https://doi.org/10.1016/S1364-0321(02)00004-7

A. Midilli, M. Ay, I. Dincer, M.A. Rosen, Renewable and sustainable energy reviews, 9 (2005) 255-271. https://doi.org/10.1016/j.rser.2004.05.003

E.I. Zoulias, N. Lymberopoulos, Renewable Energy, 32 (2007) 680-696. https://doi.org/10.1016/j.renene.2006.02.005

Z. Fan, E. Ochu, S. Braverman, Y. Lou, G. Smith, A. Bhardwaj, J. Brouwer, C. McCormick, J. Friedmann, Columbia Center for Global Energy Policy, (2021).

M. Yáñez, A. Ortiz, B. Brunaud, I.E. Grossmann, I. Ortiz, Computer Aided Chemical Engineering, Elsevier (2019) 1777-1782. https://doi.org/10.1016/B978-0-12-818634-3.50297-6

M.F. Lagadec, A. Grimaud, Nature Materials, 19 (2020) 1140-1150.

https://doi.org/10.1038/s41563-020-0788-3

D. Hyung Kweon, I.-Y. Jeon, J.-B. Baek, Advanced Energy and Sustainability Research, 2 (2021) 2100019. https://doi.org/10.1002/aesr.202100019

Y. Liang, K. Banjac, K. Martin, N. Zigon, S. Lee, N. Vanthuyne, F.A. Garcés-Pineda, J.R. Galán-Mascarós, X. Hu, N. Avarvari, M. Lingenfelder, Nature Communications, 13 (2022) 3356. https://doi.org/10.1038/s41467-022-31096-8

D. Zhu, H. Zhang, J. Miao, F. Hu, L. Wang, Y. Tang, M. Qiao, C. Guo, Journal of Materials Chemistry A, 10 (2022) 3296-3313. https://doi.org/10.1039/D1TA09989B

J. Li, S. Wang, J. Chang, L. Feng, Advanced Powder Materials, 1 (2022) 100030. https://doi.org/10.1016/j.apmate.2022.01.003

W. Sun, J. Li, W. Gao, L. Kang, F. Lei, J. Xie, Chemical Communications, 58 (2022) 2430-2442. https://doi.org/10.1039/D1CC06290E

H. Zhang, Y. Bai, X. Lu, L. Wang, Y. Zou, Y. Tang, D. Zhu, Inorganic Chemistry, (2023). https://doi.org/10.1021/acs.inorgchem.3c00234

K.S. Bhavani, T. Anusha, P.K. Brahman, Electrochimica Acta, 399 (2021) 139394. https://doi.org/10.1016/j.electacta.2021.139394

C. Walter, S. Kalra, R. Beltrán-Suito, M. Schwarze, P.W. Menezes, M. Driess, Materials Today Chemistry, 24 (2022) 100905. https://doi.org/10.1016/j.mtchem.2022.100905

T.H. Le, L.S. Le, D.G.C. Nguyen, T.V.T. Tran, X.A. Vu Ho, T.M. Tran, M.N. Nguyen, V.T. Nguyen, T.T. Le, T.H.C. Nguyen, C.C. Nguyen, Q.V. Le, ACS Omega, 7 (2022) 47923-47932. https://doi.org/10.1021/acsomega.2c05779

K. Li, Y. Tong, ChemCatChem, 14 (2022) e202201047. https://doi.org/10.1002/cctc.202201047

M.C. Biesinger, B.P. Payne, A.P. Grosvenor, L.W.M. Lau, A.R. Gerson, R.S.C. Smart, Applied Surface Science, 257 (2011) 2717-2730. https://doi.org/10.1016/j.apsusc.2010.10.051

M.T. Nguyen Dinh, C.C. Nguyen, T.L. Truong Vu, V.T. Ho, Q.D. Truong, Applied Catalysis A: General, 595 (2020) 117473. https://doi.org/10.1016/j.apcata.2020.117473

Published

15-03-2024

Issue

Section

Full Articles

How to Cite

The synthesis of γ-MnOOH nanorods as an efficient electrocatalyst for urea oxidation. (2024). Vietnam Journal of Catalysis and Adsorption, 12(2), 105-109. https://doi.org/10.51316/jca.2023.038

Share

Most read articles by the same author(s)

Similar Articles

1-10 of 172

You may also start an advanced similarity search for this article.