Synthesis of Fe2O3/UiO-66-NO2/TFC-PA catalytic film for removal of organic pollutants from aqueous solutions

Authors

  • Trinh Le Thien Hanoi University of Sciences, Vietnam National University, Hanoi Author
  • Le Thanh Son Hanoi University of Sciences, Vietnam National University, Hanoi Author
  • Trinh Xuan Dai Hanoi University of Sciences, Vietnam National University, Hanoi Author

DOI:

https://doi.org/10.51316/jca.2023.050

Keywords:

Catalytic film, Fe2O3, UiO-66-NO2, TFC-PA, organic pollutants

Abstract

A novel catalytic film of Fe2O3/UiO-66-NO2/TFC-PA was successfully synthesized via the conventional polymerization technique. The as-fabricated sample was characterized by XRD, FT-IR, UV-Vis DRS, and N2 adsorption-desorption isotherm. The catalytic activity of the film was examined by degradation of Methylene blue (MB) under irradiation of visible light. The synthesis conditions of the film were studied as well. The results illustrated that under optimal synthesis conditions as the Fe2O3/UiO-66-NO2 amount of 0.01 g, the polymerization time of 30 s, the catalytic particles were dispersed in the TMC solution and the TMC concentration was 0.1%, the film exhibited a MB removal percentage of 95 %. The material also showed an outstanding regenerative performance with the treatment efficiency reaching 92.8% after four regenerations. The kinetic results showed that the photocatalytic degradation of MB over the film followed the first-order kinetic model.

Downloads

Download data is not yet available.

References

M.M. Rafi, K.S.Z. Ahmed, K.P. Nazeer, D. Siva Kumar, M. Thamilselvan, Appl. Nanosci. 5 (2015) 515–520. https://doi.org/10.1007/s13204-014-0344-z.

S. Syazana, F. Aziz, A. Rizam, M. Nor, A. Mukhtar, S. Ahmad, J. Jaafar, N. Yusof, W. Norharyati, W. Salleh, A. Fauzi, J. Environ. Chem. Eng. 9 (2021) 105682. https://doi.org/10.1016/j.jece.2021.105682.

H. Helmiyati, N. Fitriana, M.L. Chaerani, F.W. Dini, Opt. Mater. (Amst). 124 (2022) 111982. https://doi.org/10.1016/j.optmat.2022.111982.

H. Baniamerian, P. Tsapekos, M. Alvarado-morales, Chemosphere. 242 (2020) 125119. https://doi.org/10.1016/j.chemosphere.2019.125119.

X. Li, Y. Qiu, Z. Zhu, T. Chen, H. Zhang, D. Yin, Chem. Eng. J. 440 (2022) 135840. https://doi.org/10.1016/j.cej.2022.135840.

D. Van Dao, T. Thi, N. Bich, N. Thi, T. Ha, W. Wang, T. Kim, H. Kim, P. Huynh, K. Duy, N. Ngoc, D. Thi, T. Van, Ceram. Int. 48 (2022) 34533–34542. https://doi.org/10.1016/j.ceramint.2022.08.037.

C.N.C. Hitam, A.A. Jalil, J. Environ. Manage. 258 (2020) 110050. https://doi.org/10.1016/j.jenvman.2019.110050.

M. Imran, A. Bin Yousaf, P. Kasak, A. Zeb, S.J. Zaidi, J. Catal. 353 (2017) 81–88. https://doi.org/10.1016/j.jcat.2017.06.019.

X. Zhang, Y. Yang, W. Huang, Y. Yang, Y. Wang, C. He, N. Liu, M. Wu, L. Tang, Mater. Res. Bull. 99 (2018) 349–358. https://doi.org/10.1016/j.materresbull.2017.11.028.

J.J. Du, Y.P. Yuan, J.X. Sun, F.M. Peng, X. Jiang, L.G. Qiu, A.J. Xie, Y.H. Shen, J.F. Zhu, J. Hazard. Mater. 190 (2011) 945–951. https://doi.org/10.1016/j.jhazmat.2011.04.029.

R. Panda, S. Rahut, J.K. Basu, RSC Adv. 6 (2016) 80981–80985. https://doi.org/10.1039/c6ra15792k.

S. Gautam, H. Agrawal, M. Thakur, A. Akbari, H. Sharda, R. Kaur, M. Amini, J. Environ. Chem. Eng. 8 (2020) 103726. https://doi.org/10.1016/j.jece.2020.103726.

N. Ahmadpour, M.H. Sayadi, S. Homaeigohar, RSC Adv. 10 (2020) 29808–29820. https://doi.org/10.1039/d0ra05192f.

R. Zhang, B. Du, Q. Li, Z. Cao, G. Feng, X. Wang, Appl. Surf. Sci. 466 (2019) 956–963. https://doi.org/10.1016/j.apsusc.2018.10.048.

M.B. Hussain, R. Mehmood, U. Azhar, J. Wang, L. Song, ACS Appl. Nano Mater. 4 (2021) 4037–4047. https://doi.org/10.1021/acsanm.1c00380.

S. Subudhi, S.P. Tripathy, K. Parida, Inorg. Chem. Front. 8 (2021) 1619–1636. https://doi.org/10.1039/d0qi01117g.

H.T. Dinh, N.T. Tran, D.X. Trinh, J. Anal. Meth. Chem, 2021 (2021).

D.X. Trinh, T.P.N. Tran, T. Taniike, Sep. Purif. Technol. 177 (2017) 249–256. https://doi.org/10.1016/j.seppur.2017.01.004.

W. Yang, J. Wang, Y. Han, X. Luo, W. Tang, T. Yue, Z. Li, Food Control. 130 (2021) 108409. https://doi.org/10.1016/j.foodcont.2021.108409.

M. Aghajanzadeh, M. Zamani, H. Molavi, H. Khieri Manjili, H. Danafar, A. Shojaei, J. Inorg. Organomet. Polym. Mater. 28 (2018) 177–186. https://doi.org/10.1007/s10904-017-0709-3.

A. Amalorpavadoss, N. Kavitha, A. Chandramohan, P. Santhiya, K. Dinakaran, J. Solid State Electrochem. 25 (2021) 1421–1431. https://doi.org/10.1007/s10008-021-04924-y.

R. Modi, R. Mehta, H. Brahmbhatt, A. Bhattacharya, J. Polym. Environ. 25 (2017) 1140–1146. https://doi.org/10.1007/s10924-016-0887-z.

M. Farahmandjou, F. Soflaee, Phys. Chem. Res. 3 (2015) 191–196. https://doi.org/10.22036/pcr.2015.9193.

Y. Xia, L. Yin, Phys. Chem. Chem. Phys. 15 (2013) 18627–18634. https://doi.org/10.1039/c3cp53178c.

L. Liu, L. Zhang, F. Wang, K. Qi, H. Zhang, X. Cui, W. Zheng, Nanoscale. 11 (2019) 7554–7559. https://doi.org/10.1039/c9nr00790c.

Z. Zhou, H. Yin, Y. Zhao, J. Zhang, Y. Li, J. Yuan, J. Tang, F. Wang, Catalysts. 11 (2021) 1–14. https://doi.org/10.3390/catal11030396.

Published

30-09-2023

Issue

Section

Full Articles

How to Cite

Synthesis of Fe2O3/UiO-66-NO2/TFC-PA catalytic film for removal of organic pollutants from aqueous solutions. (2023). Vietnam Journal of Catalysis and Adsorption, 12(3), 75-82. https://doi.org/10.51316/jca.2023.050

Share

Similar Articles

1-10 of 261

You may also start an advanced similarity search for this article.