Synthesis of CuO nanosheets via hydrothermal method

Authors

  • Nguyen Le My Linh Faculty of Chemistry, Hue University of Education Author
  • Bach Thi Kim Hieu Faculty of Chemistry, Hue University of Education Author

DOI:

https://doi.org/10.51316/jca.2022.011

Keywords:

CuO, nanosheets, hydrothermal method

Abstract

In this paper, CuO nanosheets were successfully synthesized by a simple hydrothermal method. The synthesized CuO nanosheets were characterized by powder X-ray diffraction (XRD) scanning electron microscopy (SEM) Fourier Transform Infrared (FTIR) surface area analysis (BET). Several factors influencing the synthesis of material such as concentration of NaOH, hydrothermal temperature and hydrothermal time were studied. Scanning electron microscopy (SEM) investigation reveals that CuO nanosheets have the length of about 500 - 1000 nm. N2 adsorption–desorption isotherm experiment shows that the BET specific surface area of obtained CuO nanosheets is 12.78 m2/g.

Downloads

Download data is not yet available.

References

Qiaobao Z., Kaili Z., Daguo X., Guangcheng Y., Hui H., Fude N., Chenmin L., Shihe Y., Progress in Materials Science 60, (2014) 208–337. https://doi.org/10.1016/j.pmatsci.2013.09.003

Kim Y-S., Hwang I-S., Kim S-J., Lee C-Y., Lee J-H, Sensors and Actuators B: Chem 135, (2008) 298–303. https://doi.org/10.1016/j.snb.2008.08.026

Yang C., Su X., Xiao F., Jian J., Wang J., Sensors and Actuators B: Chem 158, (2011) 299 – 303. https://doi.org/10.1016/j.snb.2011.06.024

Jing L., Jun J., Zhao D., Shao-Zhuan H., Zhi-Yi H., Li W., Chao W., Li-Hua C., Yu L., G. Van T., Bao-Lian S, Journal of Colloid and Interface Science (2012) 384, 1-9.

https://doi.org/10.1016/j.jcis.2012.06.044

Feng Y., Zheng X., Nano Letters 10 (11) (2010) 4762–4766. https://doi.org/10.1021/nl1034545

Zhou M., Gao Y., Wang B., Rozynek Z., Fossum J.O., Europeon Journal Inorganic Chemistry 5 (2010) 729–734. https://doi.org/10.1002/ejic.200900683

Qiu G., Dharmarathna S., Zhang Y., Opembe N., Huang H., Suib S.L, Journal of Physical Chemistry C 116 (2012) 468 – 477. https://doi.org/10.1021/jp209911k.

Neupane M.P., Kim Y.K., Park I.S., Kim K., Lee M.H., Bae T.S., Surface and Interface Analysis 41 (2009) 259 – 263. https://10.1002/sia.3009

Cao M., Hu C., Wang Y., Guo Y., Guo C., Wang E. Chemical Engineering Journal 5, 1 (2003) 1884. https://doi.org/10.1039/B304505F

Gao X., Bao J., Pan G., Zhu H., Huang P., Wu F, et al, Journal Physical Chemistry B 108 (2004) 5547–5551.https://doi.org/10.1021/jp037075k

Jingang Z., Renming L., Zengghe H. (2015) Superlattices and Microstructures 81, (2015) 243 – 247. https://doi.org/10.1016/j.spmi.2015.01.017

Behrouz S., Ebrahim A.G., Yashar A.K., Ali K., Advanced Powder Technology 25, (2014) 1043–1052. https://doi.org/10.1016/j.apt.2014.02.005

Cudennec Y., Lecerf A, Solid State Sci 5 (2003) 1471–1474. https://doi.org/10.1016/J.SOLIDSTATESCIENCES.2003.09.009

Shrestha K.M., Sorensen C.M., Klabunde K.J., Journal Physical Chemistry C 114 (2010) 14368 – 14376. https://doi.org/10.1021/jp103761h

Published

30-04-2022

Issue

Section

Full Articles

How to Cite

Synthesis of CuO nanosheets via hydrothermal method. (2022). Vietnam Journal of Catalysis and Adsorption, 11(1), 73-78. https://doi.org/10.51316/jca.2022.011

Share

Similar Articles

1-10 of 242

You may also start an advanced similarity search for this article.