Synthesis of CuO nanosheets via hydrothermal method
DOI:
https://doi.org/10.51316/jca.2022.011Keywords:
CuO, nanosheets, hydrothermal methodAbstract
In this paper, CuO nanosheets were successfully synthesized by a simple hydrothermal method. The synthesized CuO nanosheets were characterized by powder X-ray diffraction (XRD) scanning electron microscopy (SEM) Fourier Transform Infrared (FTIR) surface area analysis (BET). Several factors influencing the synthesis of material such as concentration of NaOH, hydrothermal temperature and hydrothermal time were studied. Scanning electron microscopy (SEM) investigation reveals that CuO nanosheets have the length of about 500 - 1000 nm. N2 adsorption–desorption isotherm experiment shows that the BET specific surface area of obtained CuO nanosheets is 12.78 m2/g.
Downloads
References
Qiaobao Z., Kaili Z., Daguo X., Guangcheng Y., Hui H., Fude N., Chenmin L., Shihe Y., Progress in Materials Science 60, (2014) 208–337. https://doi.org/10.1016/j.pmatsci.2013.09.003
Kim Y-S., Hwang I-S., Kim S-J., Lee C-Y., Lee J-H, Sensors and Actuators B: Chem 135, (2008) 298–303. https://doi.org/10.1016/j.snb.2008.08.026
Yang C., Su X., Xiao F., Jian J., Wang J., Sensors and Actuators B: Chem 158, (2011) 299 – 303. https://doi.org/10.1016/j.snb.2011.06.024
Jing L., Jun J., Zhao D., Shao-Zhuan H., Zhi-Yi H., Li W., Chao W., Li-Hua C., Yu L., G. Van T., Bao-Lian S, Journal of Colloid and Interface Science (2012) 384, 1-9.
https://doi.org/10.1016/j.jcis.2012.06.044
Feng Y., Zheng X., Nano Letters 10 (11) (2010) 4762–4766. https://doi.org/10.1021/nl1034545
Zhou M., Gao Y., Wang B., Rozynek Z., Fossum J.O., Europeon Journal Inorganic Chemistry 5 (2010) 729–734. https://doi.org/10.1002/ejic.200900683
Qiu G., Dharmarathna S., Zhang Y., Opembe N., Huang H., Suib S.L, Journal of Physical Chemistry C 116 (2012) 468 – 477. https://doi.org/10.1021/jp209911k.
Neupane M.P., Kim Y.K., Park I.S., Kim K., Lee M.H., Bae T.S., Surface and Interface Analysis 41 (2009) 259 – 263. https://10.1002/sia.3009
Cao M., Hu C., Wang Y., Guo Y., Guo C., Wang E. Chemical Engineering Journal 5, 1 (2003) 1884. https://doi.org/10.1039/B304505F
Gao X., Bao J., Pan G., Zhu H., Huang P., Wu F, et al, Journal Physical Chemistry B 108 (2004) 5547–5551.https://doi.org/10.1021/jp037075k
Jingang Z., Renming L., Zengghe H. (2015) Superlattices and Microstructures 81, (2015) 243 – 247. https://doi.org/10.1016/j.spmi.2015.01.017
Behrouz S., Ebrahim A.G., Yashar A.K., Ali K., Advanced Powder Technology 25, (2014) 1043–1052. https://doi.org/10.1016/j.apt.2014.02.005
Cudennec Y., Lecerf A, Solid State Sci 5 (2003) 1471–1474. https://doi.org/10.1016/J.SOLIDSTATESCIENCES.2003.09.009
Shrestha K.M., Sorensen C.M., Klabunde K.J., Journal Physical Chemistry C 114 (2010) 14368 – 14376. https://doi.org/10.1021/jp103761h