Photodegradation of Synozol Red HF-6BN on g-C3N4/Halloysite nanocomposites

Authors

  • Hoa Thi Nguyen Department of Chemical Engineering, Hanoi University of Mining and Geology, 18-Vien Street, Duc Thang Ward, Bac Tu Liem, Hanoi, Vietnam Author
  • Xuan Nui Pham Department of Chemical Engineering, Hanoi University of Mining and Geology, 18-Vien Street, Duc Thang Ward, Bac Tu Liem, Hanoi, Vietnam Author

DOI:

https://doi.org/10.51316/jca.2021.064

Keywords:

Photocatalyst, g-C3N4, Halloysite Nanocomposite, Synozol red HF-6BN

Abstract

In the research, graphitic carbon nitride (g-C3N4) was synthesized using modified halloysite via a calcination method. The improvement of photocatalytic activity mainly benefits from the reduced e-/h+ pairs recombination rate, the improved electron separation yield. The photocatalytic activity of nanocomposite was evaluated through the Synozol red HF-6BN dye degradation, the degradation efficiency approached 99% after 30 mins irradiation under the solar light, and the performance is slightly reduced to 94 % after three consecutive tests. These results have demonstrated an effective method to synthesize g-C3N4 photocatalysts with nanostructures using crude clay minerals.

Downloads

Download data is not yet available.

References

C. Fernández, M. S. Larrechi, and M. P. Callao, An analytical overview of processes for removing organic dyes from wastewater effluents, TrAC - Trends in Analytical Chemistry (2010). https://doi.org/10.1016/j.trac.2010.07.011

T. L. H. Vũ Thị Bích Ngọc, Hoàng Thị Hương Huế, “Xử lý mầu nước thải dệt nhuộm thực tế bằng phương pháp oxy hóa nâng cao,” Tạp chí Khoa học DHQGHN khoa học tự nhiên và công nghệ, vol. 32, no. 4 (2016) 97–103.

Nguyễn Kim Suyến, Nghiên cứu điều chế, khảo sát cấu trúc và tính chất của titan dioxit kích thước nano met được biến tính bằng nito, Luận văn thạc sĩ, Đại học Khoa học tự nhiên - Đại học Quốc gia Hà Nội (2010).

K. Nakata and A. Fujishima, TiO2 photocatalysis: Design and applications, J. Photochem. Photobiol. C Photochem. Rev., vol. 13, no. 3 (2012) 169–189.

L. Cheng, Q. Xiang, Y. Liao, and H. Zhang, CdS-based photocatalysts, Energy Environ. Sci., vol. 11, no. 6 (2018) 1362–1391. https://doi.org/10.1039/C7EE03640J

C. Huang, L. Chen, H. Li, Y. Mu, and Z. Yang, Synthesis and application of Bi2WO6 for the photocatalytic degradation of two typical fluoroquinolones under visible light irradiation, RSC Adv., vol. 9, no. 48 (2019) 27768–27779. https://doi.org/10.1039/C9RA04445K

J. Zhang and H. Sun, Carbon nitride photocatalysts, in Multifunctional Photocatalytic Materials for Energy, Elsevier (2018) 103–126.

Y. Wang, X. Wang, and M. Antonietti, Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: From photochemistry to multipurpose catalysis to sustainable chemistry, Angewandte Chemie - International Edition (2012) https://doi.org/10.1002/anie.201101182

I. Papailias, N. Todorova, T. Giannakopoulou, J. Yu, D. Dimotikali, and C. Trapalis, Photocatalytic activity of modified g-C3N4/TiO2 nanocomposites for NOx removal, Catal. Today, vol. 280 (2017) 37–44.

Z. Zhao, Y. Sun, and F. Dong, Graphitic carbon nitride based nanocomposites: A review, Nanoscale (2015). https://doi.org/10.1039/c4nr03008g

J. Liu, S. Xie, Z. Geng, K. Huang, L. Fan, W. Zhou, L. Qiu, D. Gao, L. Ji, L. Duan, L. Lu, W. Li, S. Bai, Z. Liu, W. Chen, S. Feng, and Y. Zhang, Carbon Nitride Supramolecular Hybrid Material Enabled High-Efficiency Photocatalytic Water Treatments, Nano Lett., (2016). https://doi.org/10.1021/acs.nanolett.6b03229

Q. Han, B. Wang, J. Gao, Z. Cheng, Y. Zhao, Z. Zhang, and L. Qu, Atomically Thin Mesoporous Nanomesh of Graphitic C3N4 for High-Efficiency Photocatalytic Hydrogen Evolution, ACS Nano, (2016). https://doi.org/10.1021/acsnano.5b078

S. Ma, S. Zhan, Y. Jia, Q. Shi, and Q. Zhou, Enhanced disinfection application of Ag-modified g-C3N4 composite under visible light Appl. Catal. B Environ., (2016).

https://doi.org/10.1016/j.apcatb.2015.12.051

R. Chen, J. Zhang, Y. Wang, X. Chen, J. A. Zapien, and C. S. Lee, Graphitic carbon nitride nanosheet@metal-organic framework core-shell nanoparticles for photo-chemo combination therapy, Nanoscale, (2015). https://doi.org/10.1039/c5nr04436g

Z. Zhu, Z. Lu, D. Wang, X. Tang, Y. Yan, W. Shi, Y. Wang, N. Gao, X. Yao, H. Dong, Construction of high-dispersed Ag/Fe3O4/g-C3N4 photocatalyst by selective photo-deposition and improved photocatalytic activity, Appl. Catal. B Environ. (2016).

https://doi.org/10.1016/j.apcatb.2015.09.029

S. Verma, R. B. Nasir Baig, C. Han, M. N. Nadagouda, and R. S. Varma, Magnetic graphitic carbon nitride: Its application in the C-H activation of amines, Chem. Commun., (2015).

https://doi.org/10.1039/c5cc05895c

E. Abdullayev and Y. Lvov, Halloysite clay nanotubes for controlled release of protective agents, Journal of Nanoscience and Nanotechnology. (2011). https://doi.org/10.1166/jnn.2011.5724

W. Wang, Z. Shu, J. Zhou, T. Li, P. Duan, Z. Zhao, Y. Tan, C. Xie, S. Cui, Halloysite-derived mesoporous g-C3N4 nanotubes for improved visible-light photocatalytic hydrogen evolution, Appl. Clay Sci., vol. 158, no. December 2017 (2018) 143–149. https://doi.org/10.1016/j.clay.2018.03.018

S. Cao, J. Low, J. Yu, and M. Jaroniec, Polymeric Photocatalysts Based on Graphitic Carbon Nitride, Adv. Maer., (2015). https://doi.org/10.1002/adma.201500033

W. Yan, L. Yan, and C. Jing, Impact of doped metals on urea-derived g-C3N4 for photocatalytic degradation of antibiotics: structure, photoactivity and degradation mechanisms, Appl. Catal. B Environ., 244 (2019) 475–485. https://doi.org/10.1016/j.apcatb.2018.11.069

J. M. Falcón, T. Sawczen, and I. V. Aoki, Dodecylamine-loaded halloysite nanocontainers for active anticorrosion coatings, Front. Mater., vol. 2, (2015) 69. https://doi.org/10.3389/fmats.2015.00069

P. Qiu, C. Xu, H. Chen, F. Jiang, X. Wang, R. Lu, X. Zhang, One step synthesis of oxygen doped porous graphitic carbon nitride with remarkable improvement of photo-oxidation activity: Role of oxygen on visible light photocatalytic activity, Appl. Catal. B Environ., vol. 206 (2017) 319–327. https://doi.org/10.1016/j.apcatb.2017.01.058

H. Huang, K. Xiao, N. Tian, F. Dong, T. Zhang, X. Du, Y. Zhang, Template-free precursor-surface-etching route to porous, thin gC3N4 nanosheets for enhancing photocatalytic reduction and oxidation activity, J. Mater. Chem. A, vol. 5, no. 33 (2017) 17452–17463. https://doi.org/10.1039/C7TA04639A

A. Akhundi and A. Habibi-Yangjeh, Novel magnetically separable g-C3N4/AgBr/Fe3O4 nanocomposites as visible-light-driven photocatalysts with highly enhanced activities, Ceram. Int., (2015). https://doi.org/10.1016/j.ceramint.2014.12.145

H. Shi, G. Chen, C. Zhang, and Z. Zou, Polymeric g-C3N4 coupled with NaNbO3 nanowires toward enhanced photocatalytic reduction of CO2 into renewable fuel, ACS Catal., (2014).

https://doi.org/10.1021/cs500848f

G. Mishra and M. Mukhopadhyay, TiO2 decorated functionalized halloysite nanotubes (TiO2@ HNTs) and photocatalytic PVC membranes synthesis, characterization and its application in water treatment, Sci. Rep., vol. 9, no. 1 (2019) 1–17. https://doi.org/10.1038/s41598-019-40775-4

S. Ahmed, M. G. Rasul, W. N. Martens, R. Brown, and M. A. Hashib, Heterogeneous photocatalytic degradation of phenols in wastewater: A review on current status and developments, Desalination. (2010). https://doi.org/10.1016/j.desal.2010.04.062

F. Chen, Q. Yang, Y. Zhong, H. An, J. Zhao, T. Xie, Q. Xu, X. Li, D. Wang, G. Zeng, Photo-reduction of bromate in drinking water by metallic Ag and reduced graphene oxide (RGO) jointly modified BiVO4 under visible light irradiation, Water Res., vol. 101, 555–563, 2016. https://doi.org/10.1016/j.watres.2016.06.006

Published

31-12-2021

Issue

Section

Full Articles

How to Cite

Photodegradation of Synozol Red HF-6BN on g-C3N4/Halloysite nanocomposites. (2021). Vietnam Journal of Catalysis and Adsorption, 10(4), 23-32. https://doi.org/10.51316/jca.2021.064

Share

Funding data

Similar Articles

1-10 of 143

You may also start an advanced similarity search for this article.